А) ВД⊥АО, АО⊥АМ, значит по теореме о трёх перпендикулярах ВД⊥АМ.
Прямая ВД перпендикулярна двум взаимно перпендикулярным прямым, лежащим в одной плоскости АМО, значит она перпендикулярна самой плоскости.
б) МО лежит в плоскости АМО, ВД⊥АМО, значит ВД⊥МО.
Ответ:
1) DB - диагональ ромба ⇒ DB биссектриса ∠ADC ⇒ ∠ADB = ∠BDC = 60°
2) ∠DBC = ∠ADB = 60° (тк внутренние накрест лежащие при AD ║ BC и сек. BD)
3) DB - биссектриса ∠ABC (по св-ву диагоналей ромба) ⇒ ∠ABD = ∠DBC = 60°
∠ADB = ∠BDC = ∠ABD = ∠DBC = 60° ⇒ ∠A + ∠C = 360° - ( ∠ADB + ∠BDC + ∠ABD + ∠DBC ) = 360° - 240° = 120° ⇒ ∠A = ∠C (тк ABCD - ромб и параллелограмм, а ∠A и ∠C - противолеж) = 120° : 2 = 60°
ΔADB и ΔDBC - равносторонние (тк их углы равны 60°) ⇒ AB = AD=DC = BC = BD = 3 см
Периметр = AB + AD + DC + BC = 3+3+3+3 = 12 см
Ответ: P = 12 см
Для правильного треугольника радиус описанной окружности вычисляется по формуле
, где а - сторона треугольника. В нашем случае
. Сторона квадрата, описанного вокруг окружности равна двум радиусам, то есть
ТОIIАС, АТ=СО ( следует из параллельности и равнобедренности треугольника). Полученнный четырехугольник - равнобокая трапеция (основания параллельны и боковые стороны равны). Вокруг равнобокой (!) трапеции можно описать окружность