Пусть MABCD - данная правильная пирамида, ее апофема - МЕ.
Проведем высоту МО.
В прямоугольном Δ МЕО ∠ ОМЕ = 90°-60° = 30°.
Значит, катет ОЕ равен половине гипотенузы МЕ: ОЕ=√3.
Т.к. пирамида правильная, то Е - середина DC.
Точка О - середина АС. Значит, ОЕ - средняя линия ΔACD. Тогда ОЕ||AD и AD=2OE =2√3
Значит,
В прямоугольном Δ МЕО по тереме Пифагора МО² = МЕ² - ОЕ²
Таким образом,
Ответ: 12.
Допустим что сторона треугольника равна "а". Биссектриса в равностороннем треугольнике есть его высота. Высота рассчитывается по формуле "а корней из трёх делить на 2". Явно видно, что "а корней из трёх делить на 2" будет меньше, чем просто а. (если сомневаетесь, подставьте любое число вместо а). Раз Радиус будет меньше, чем сторона треугольника, значит окружность из этого радиуса и будет касаться сторон треугольника.
Диагональ делит нашу трапецию на 2 Δ ( один прямоугольный, а другой равнобедренный, т.к. накрест лежащие углы равны + биссектриса)Боковая сторона = основанию и = 15. Проведём из вершины тупого угла высоту и по т Пифагора найдём её.
H² =15² - 12² = 225 - 144 - 81 ⇒ H = 9
S = (15 + 27)·9/2 = 42 ·9/2 = 21 ·9 = 189
Медиана треугольника делит сторону ВС на равные отрезки (ВМ=МС). Рассмотрим треугольник ВАМ. Стороны АМ=МВ, значит треугольник равнобедренный и углы при основании равны. Угол ВАМ=АВМ=а. В треугольнике АМС Сторона АМ=МС (так как ВМ=МС) и этот треугольник равнобедренный угол МАС=МСА=в. Угол В=а, угол С=в, а угол А=ВАМ+МАС=а+в