<span>Двугранный угол = 180 - 80 = 100 градусов, т. к. призма прямая. </span>
<span><em>Сосуд в виде правильной треугольной пирамиды высотой 25√3 см до верха заполнен водой. <u>Найдите, на какой высоте </u>будет находиться уровень воды, если её перелить в другой сосуд, имеющий форму куба со стороной, равной стороне основания данной треугольной пирамиды.</em></span>
––––––––––––
Сосуд - значит, пирамида <span>перевернутая</span>. На ответ не влияет, т.к. заполнен полностью.
Пусть сторона основания =а.
Объем пирамиды находят по формуле
V=S•h/3
S=(a²√3):4
V=[(a²√3•25√3):4]:3=25a²/4
Такой же объем воды, перелитый в куб, образует в нем прямоугольный параллелепипед, в основании которого грань куба, а высота находится на уровне воды. Объем параллелепипеда находим по формуле:
V=a²•h
25a²/4=a²•h
h=25/4=6,25 см
........................................
Биссектриса делит противоположную сторону пропорционально прилежащим сторонам,
Боковушка имеет длину 8x, основание 12x
8x = 8 + 12 = 20
x = 2,5
и стороны 20, 20, 30
полупериметр
p = 1/2(20+20+30) = 20+15 = 35
Площадь по формуле Герона
S² = 35*(35-20)*(35-20)*(35-30) = 35*15*15*5
S = 15*5*√7 = 75√7
И площадь через радиус вписанной окружности и полупериметр
S = rp
r = S/p = 75√7/35 = 15/√7
Пусть АВ=а, АС=b, BC=2R
Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.
Центр вписанной окружности лежит на пересечении биссектрис.
OC и ОВ- биссектрисы
Докажем что треугольник OFC=OEC.
угол OFC=OEC=90
угол OCF=OCE, тк ОС-биссектриса
=>угол FOC=EOC
OC-общая
Из доказательства следует что FC=EC=b-r
Аналогично доказываем что треугольник BOD=BOE и что DB=BE=a-r
BC=2R=BE+EC=(b-r)+(a-r)=b+a-2r