Периметр данного треугольника Р = 15 + 20 + 35 = 70 см
коэффициент их подобия к = Р/Р1 = 70/35 = 2
значит стороны подобного треугольника
а = 15/к = 7,5 см
в = 20/к = 10 см
с = 35/к = 17,5 см
2. уравнение
угол В -12х угол С -х
сумма углов треугольника 180°
50+12х+х=180
50+13х=180
13х=180-50
13х=130
х=130:13
х= 13° угол В
угол С= ....
3. 180-(90+35)=180-125=55
4.
Из формулы площади правильного треугольника основания пирамиды
S = a²√3/4 находим сторону основания:
а = √(4S/√3) = √(4*12√3/√3) = √48 = 4√3 см.
Высота h основания равна:
h = a*cos 30° = 4√3*(√3/2) = 6 см.
Так как боковые грани наклонены под углом 45°, то высота Н пирамиды равна проекции апофемы на основание и равна (1/3)h.
Ответ: Н = 6/3 = 2 см.
Вот доказательство , вроде доказала все правильно .