Пусть имеем пирамиду РАВС. Сторона ВС = а, угол АСВ = α.
Сторона АВ = а*tgα, АС = а/cosα.
Площадь основания So = (1/2)a*atgα = (a²tgα)/2.
Так как все боковые грани наклонены к плоскости основания под одинаковым углом, то применим формулу So = Sбок*cosβ.
Отсюда получаем Sбок = Sо/cosβ = (a²tgα)/(2*cosβ).
<span>
1). R = 12 см
l = 2πR·α / 360°
1. l = 2π·12·36° / 360° = 24π/10 = 2,4π см
2. l = 2π·12·72° / 360° = 4,8π см
3. l = 2π·12·45° / 360° = 3π см
4. l = 2π·12·15° / 360° = π см
2) l = 2πR R = l / (2π)
S = πR² = πl² / (4π²) = l² / (4π)
1. l = 6π см
S = 36π² / (4π) = 9π см
2. l = 4π см
S = 16π² / (4π) = 4π см²
3. l = 10π см
S = 100π² / (4π) = 25π см²
4. l = 8π см
S = 64π² / (4π) = 16π см²
3)
а) R = 12 см,
l = πR·α / 180°
α = l · 180° / (πR)
1. l = 2π см
α = 2π · 180° / (12π) = 30°
2. l = 3π см
α = 3π · 180° / (12π) = 45°
б) R = 10 см,
Sсект = πR²·α / 360°
α = Sсект·360° / (πR²)
1. Sсект = 5π см²
α = 5π·360° / (100π) = 18°
2. Sсект = 10π см²
α = 10π·360° / (100π) = 36°</span>
Решение приведено во вложении
По теореме Пифагора:
ВС = 5
АВ = 4
ВС^2 = AB^2 + AC^2
25 = 16 + AC^2
AC^2 = 25 - 16
AC^2 = 9
AC = 3
Треугольник МРО - равнобедренный, значит ∠МРО=∠РМО, по сумме углов треугольника ∠МРО= (180°-∠МОР):2=50°