Треугольники равны по стороне и прилежащим к ней углам
следовательно равны все соответствующие элементы
х=4
Соединим А и В₁, В и А₁.
Продолжим ОО₁ в обе стороны до пересечения с АВ₁ в точке О₃ и с ВА₁ в точке О₂
<span>Так как АА</span>₁<span> || ВВ1</span>₁<span> || ОО</span>₁<span>, и ВО=ОА, четырехугольник АА</span>₁<span>ВВ</span>₁<span>- трапеция с основаниями АА</span>₁ <span>|| ВВ</span>₁<span>, и
О</span>₃<span>О</span>₂<span>- её средняя линия.
</span>Средняя линия трапеции равна полусумме оснований.
О₂О₂=(21+28):2=24,5
ОО₁=О₂О₃-(ОО3+О1О2)
О₁О₂ - средняя линия треугольника ВА₁В₁
ОО₃- средняя линия треугольника АВВ₁
ОО₃=О₁О₂=ВВ₁:2=21:2=10,5
<span>ОО</span>₁<span>=24,5-(10,5+10,5)=3,5 см</span>
Вообще 12, но если с решением
12-5=7-второе основание
12+5=17-первое;
(17+7):2= 12
AA₁ и CC₁ ⊥ (ABC) как рёбра куба.
Поэтому AA₁║CC₁
AA₁║CC₁ ⊂ (ACC₁), поэтому AA₁║(ACC₁) или AA₁ ⊂ (ACC₁). A ∈ AA₁, (ACC₁) значит, AA₁ не может быть параллельной плоскости (ACC₁) (одна общая точка уже есть). Осталось одно возможно взаимное расположение в пространстве: AA₁ ⊂ (ACC₁). А значит, любая точка прямой AA₁ принадлежит плоскости (ACC₁): A∈AA₁⊂(ACC₁) ⇒ A₁∈(ACC₁).
Иными словами, плоскость (ACC₁) проходит через точку A₁ , что и требовалось доказать.
Ну смотри, косинус- это отношение прилежащего катета к гипотенузе /синус- это отнош. противолежащего катета к гипотенузе/ вот, сократи дробь (если можно) и Вуаля! С: