a = 4, b = 13, c = 15.
p = (a + b + c) / 2 = (4 + 13 + 15) / 2 = 32 / 2 = 16
S = √(p·(p - a)(p - b)(p - c))
S = √(16 · (16 - 4)(16 - 13)(16 - 15)) = √(16 · 12 · 3 · 1) = 4√(4 · 3 · 3) = 4 · 2 · 3 = 24
ABCD - параллелограмм. AB=5 BD=7 < BAD=60
BD^2=AB^2+AD^2-2*AB*AD*cos(60)
AD=8
P=2(AB+AD)=26
Высота BH=AB*sin(60)=2,5*sqrt(3)
S=AD*BH=20*sqrt(3)
Вроде так)) не за что !
Внешний угол В =Х, внешн. угол А= Х+64
угол ВАС = 180-(Х+64)=116-Х, внешний угол В = сумме двух других внутренних углов треугольника-по теореме
то есть, внешн угол В=уголВАС+ угол С,
Х=116-Х+80
2Х=196
Х=98
угол В = 180-внеш угол В=180-98=82
отв: 82
Решение:
Пусть х - наибольшая сторона треугольника.
х + х - 1 + х - 4 = 15
3х = 15 + 1 + 4
3х = 20
х = 6,6(6)
х ~ 7
2 сторона = 7см - 1см ~ 6см
3 сторона = 7см - 4см ~ 3см.
По свойству треугольника: Любая сторона треугольника меньше суммы двух других сторон этого треугольника.
7 < 6+3 I
6 < 7+3 I => Треугольник существует.
3 < 7+6 I
Ответ: Да, могут.
Есть формула площади S=AC·h/2
AC=8 S=12 h=?
вставим все на место тогда
8·h/2=12
8·h=24
h=3