Ответ:
Отрезок СК - тоже биссектриса угла С.
Угол С = 180°-(А+В).
Разделим обе части этого уравнения на 2:
(С/2) = 90°-((А+В)/2).
Из треугольника АКВ имеем (А+В)/2 = 180° - 150 = 30°.
Отсюда искомый угол ВСК = (С/2) = 90°-30° = 60°.
Объяснение:
Ответ а 5см10сму30сантимет
<u>Дано: </u><em>Прямоугольная трапеция (АВСД)</em>
<em>Меньшее основ= 8 см, (АВ)</em>
<em>Меньш. бок стор.= 8 см (ВС)</em>
<em>Больш бок.стор. = 10 см (АД)</em>
<u>Найти</u>: <em>S трап.</em>
<u>Решение</u>
Меньшая боковая сторона прямоугольной трапеции - это высота.
Параллельная ей высота (АЕ), это катет прямоугольного треугольника, где большая боковая сторона (АД) - гипотенуза, а второй катет (ДЕ) - отсекаемый от большего основания отрезок (ДЕ). Этот отрезок равен разности основания, т.к. меньшая сторона и высота образуют квадрат с меньшим основанием и отрезком большего.
Т.е. большее основание (ДС) <span>делится на сторону квадрата(СЕ), равную меньшему основанию(ВС), и катет(ДЕ) прямоугольного треугольника.
</span>Этот катет равен квадратному корню их разности квадратов гипотенузы и второго катета: (ДЕ² = АД² - АЕ²)
√(10² - 8²) =√(100 - 64) =√36 = 6 (см) длина катета(ДЕ)
Большее основание (ДС = ДЕ + СЕ) = 6+8 = 14 (см)
Площадь трапеции равна произведению полусуммы оснований на высоту
(S = [(АВ+СД)/2]*ВC) = [(8+14)/2]*8 = (22/2)*8 = 88 (см²)
<u>Ответ</u>: 88 см²
Длина диагонали грани равна
Это и есть радиус искомого цилиндра, высота - 2.
Итого, объем равен
Можно и проинтегрировать по иксу от 0 до 2, f(x)=8^(1/2).
Получится
что совпадает с ответом выше
А вопрос то какой?
допустим угол САВ = 36 ,а САD=21 и это все по условию.
значит угол BCA=CAD = 21 (вертикальные)
а угол ACD=CAB=36 (вертикальные)
можно найти угол В =
= 180-(36+21)=123
найдем угол А=
=36+21=57
<em>Ответ:А=С=57</em>
<em> В=D=123</em>
<u>Если решение устроило , то не забудьте "спасибо" поставить ;)</u>