АА₁⊥(АВС), BD ⊂(АВС), ⇒BD⊥AA₁,
BD⊥AO как диагонали квадрата, ⇒
BD⊥(AA₁O).
Плоскость (BA₁D) проходит через BD, значит плоскости (AA₁O) и (BA₁D) перпендикулярны.
Проведем АН⊥А₁О.
АН∈ (AA₁O), ⇒ АН⊥BD, значит АН⊥(BA₁D).
АН - искомое расстояние.
АА₁ = 1,
АО = АС/2 = √2/2,
А₁О = √(АА₁² + АО²) = √(1 + 1/2) = √6/2 - по теореме Пифагора
АН = АА₁ · АО / А₁О (высота, проведенная к гипотенузе, равна отношению произведения катетов к гипотенузе)
АН = √2/2 / √6/2 = 1/√3 = √3/3
B/c = Sin β ⇒ c = b/Sin β Радиус описанной окружности - это половина гипотенузы.
R = b/2Sin β
Решение задания смотри на фотографии
Треугольники АВС и КВМ подобны, так как <B у них общий, а стороны, образующие этот угол пропорциональны: ВМ/ВС=ВК/АВ=1/3.Тогда отрезок МК=24*(1/3)=8.
По теореме косинусов в треугольнике АВС:
CosA=(AB²+AC²-BC²)/(2*АВ*AC) = (12²+24²-18²)/(2*12*24).
CosA=(720-324)/576=0,6875.
По теореме косинусов в треугольнике АМС:
МС²=АМ²+АС²-2*АМ*АС*CosA = 36+576-2*12*0,6875=414.
По теореме косинусов в треугольнике КМС:
CosK = (MK²+KC²-MC²)/(2*MK*KC) = (64+196-414)/224=-0,6875.
Мы видим, что косинусы углов А и К в четырехугольнике АМКС отличаются только знаком. Следовательно, они в сумме равны 180°, а это значит, что около четырехугольника АМКС можно описать окружность и притом ТОЛЬКО ОДНУ.
Что и требовалось доказать.
Значит, чтобы найти радиус этой окружности, достаточно найти радиус описанной окружности любого из треугольников АМС или КМС.
Найдем радиус описанной окружности треугольника АМС по теореме
синусов :
МС/SinA = 2R.
SinA=√(1-Cos²A) = √(1-0,6875²) ≈ 0,726.
R=MC/2*SinA = √414/(2*0,726) ≈ 14 ед.
Ответ: R=14 ед.
Если сделать рисунок, то будет видно, что точка B лежит в пслокости OXZ, так как ордината точки B равна нулю. Рассмотрим треугольник ABO. Он прямоугольный, одна сторона его OA лежит на оси ординат. Из условия задачи угол ABO=30 градусов (это как раз угол пересечения прямой AB с осью OXZ). Найдем длину OA.
OA=OB*tgABO=OB*tg30
Чтобы найти OA, найдем чему равно OB.
Для этого опустим перпендикуляры из точки B на ось x (пересечение - точка K) и ось z (пересечение - точка L). Из координат точки B понятно, что BK=1, BL=1
Из теоремы Пифагора находим, что
Теперь находим OA:
OA - это и есть значение ординаты точки A
Так как A лежит на оси ординат, ее координаты x=0 и z=0
Возможны два случая:
1) A лежит в положительной части оси ординат
Тогда координаты точки будут
2) A лежит в отрицательной части оси ординат
Тогда координаты точки будут