Ответ:
Р= 64 см - периметр осевого сечения конуса
Объяснение:
рассмтрим прямоугольный треугольник:
катет h(h>0) - высота конуса
гипотенуза (h+1) - образующая конуса
катет R=7 см - радиус основания конуса
теорема Пифагора:
(h+1)^2=h^2+R^2
h^2+2h+1=h^2+49
2h=48
h=24 см
d=2R - диаметр основания конус
d=14см
сечение конуса - равнобедренный треугольник, стороны которого равны:
а=b=25 см (h+1=24+2) - образующие конуса
c=14 см (d=14) - диаметр основания конуса.
периметр:
Р=25+25+14=64
|АВ|=^10(под корнем)
S=ah
h=^5
S=^50=5^2
∠ABO = 35°.
З прямокутного трикутника AOB: ∠BAO = 90° - ∠ABO = 90° - 35° = 55°.
∠ ABC = ∠ ADC = 2 · ∠ABO = 2 · 35° = 70°
∠ BAD = ∠ BCD = 2 · ∠ BAO = 2 · 55° = 110°
Сума кутів чотирикутника дорівнює 360°. Перевіримо: 2·70° + 2·110° = 360°
Отже, більший кут дорівнює 110°
1 способ:
D = 14 cм
С = пиD = 14 * 3.14 = 43.96
Где: D - диаметр, С - длина окружности
2 способ:
R = 14/2 = 7
C = 2пиR = 2 * 3.14 * 7 = 43.96
Где: R - радиус, С - длина окружности