Треугольник ABD тоже равнобедренный, AD = BD =12;
(то есть у треугольника ABD известны все три стороны AB = 18;)
С ходу в голову приходит воспользоваться теоремой косинусов, и тем, что углы ADB и CDB - дополнительные. Если (для максимальной краткости записи) обозначить 2*cos(Ф) = z; где Ф - это угол CDB; и DC = x; то
12^2 + 12^2 + 12*12*z = 18^2;
12^2 + x^2 - 12*x*z = 18^2;
откуда конечно можно найти x = DC;
дальше техника. Вместо того, чтобы находить из первого уравнения z и подставлять во второе, можно заметить, что
x^2 - 12*x*z = 12^2 + 12*12*z;
или
x^2 - 12^2 = 12*(x + 12)*z;
12*z = x - 12; если это подставить в первое уравнение, получится
12^2 + 12^2 + 12*(x - 12) = 18^2 = 12*27;
12 + 12 + x - 12 = 27;
x = 15;
Все это хорошо, но есть совсем элементарное решение.
Очевидно, что треугольники ABD и ABC подобны - это равнобедренные треугольники с одинаковыми углами при основаниях.
Треугольник ABD подобен треугольнику (2,2,3) с коэффициентом 6, то есть (12,12,18); а треугольник ABC имеет боковую сторону 18, то есть коэффицент подобия 9 с тем же треугольником (2,2,3) то есть его основание AC = 27; откуда DC = 15;
Vк=Vц
Vк=(1/3)πR₁² *H₁
V=(1/3)π*0,9² *4
V=1,08πдм³
Vц=πR₂² *H₂
1,08π=π1,2² *H₂
H₂=0,75
ответ: высота цилиндра 0,75 дм
Заметим, что треугольник АВС подобен треугольнику АКР. Угол А у них общий. По теореме Фалеса прямая КР отсекает на прямой ВС пропорциолнально такой же отрезок как и на АВ. ТО есть СР:РВ=2:1.То есть треугольники пропорциональны по двум сторонам и углу А между ними. Коэффициентом подобия будет 3. То есть АВ:КВ=(АК+КВ):КВ=(2х+х):х=3:1. Значит КВ=АВ:3=9:3=3, BP=BC:3=12:3=4, KP=AC:3=15:3=5. Периметр треугольника АКР равен
3+4+5=12 см
Ответ:
СОСТАВИМ УРАВНЕНИЕ х+х-2+х+3=Р и теперь решить и приравнять