Итак, начнем с формулы площади полной поверхности шара.
S = 4πR²
S1 -S2 = 192π, то есть 4πR1²- 4πR2² = 192π
(Поясню, что S1 и S2 - площади, соответственно, первого и второго шара, а R1 и R2, следовательно, радиусы этих шаров.)
Тогда 4π(R1² - R2²) = 192π
Раскрываем как разность квадратов и сокращаем на 4π
(R1-R2)(R1+R2)=48
Нам дано, что расстояние между центрами двух внешне касающихся шаров рано 24, что эквивалентно, по сути, тому, что сумма их их радиусов равна 24.
24(R1-R2) = 48
R1-R2=2
R1 = 2+R2
2+2R2 = 24
2R2=22
R2=11, R1 = 24-11=13.
Вот, собственно, и все. Удачи!
Рассмотрим систему координат А₁В -ось ОХ, А₁Д -ось ОУ и А₁А- ось ОZ
пусть ребро куба равно "а" тогда
А₁(0,0,0), А ( 0,0,а), В( а,0,а), М ( 0,а, 0,5а) Д₁ (0,а,0)
1) Найдём координаты векторов
АД₁( 0,а,-а) и ВМ( -а,а, -0,5а)
2) Найдём их длины
| АД₁|² = 0²+а² +а² = 2а² тогда | АД₁| =а√2
| ВМ|² = а²+а² +0,25а² = 2,25а² тогда | АД₁| =1,5а
3) cosα = ( 0+а² +0,5а² ) / а√2*1,5а = 1/√2
тогда α =45 градусов ( это угол между векторами)
Сумма углов правильного выпуклого
четырехугольника=180(n-2)=180*(4-2)=180*2=360°.
Каждый угол=360/4=90°
∠ACD=∠OAB- накрест лежащие углы при параллельных прямых и секущей.
АО=АВ⇒ΔАОВ- равнобедренный.
∠АВО=∠АОВ =(180-74)/2=53°. Это угол между диагоналями.