1. Сторона ромба равна 100:4=25 (см), так как все стороны у ромба равны.
2. Ромб диагоналями делится на 4 равных прямоугольных треугольника. Рассмотрим один из них.
Обозначим один катет через х см, тогда второй равен х+5 см. Используя теорему Пифагора, составляем уравнение:
х² + (х+5)² = 25²
х² + х² + 10х + 25 = 625
2х² + 10х - 600 = 0
Д=100+4800=4900
х1 = -20 - не подходит под условие задачи
х2 =15
15 см - один катет
15+5=20 (см) - второй катет
3. Каждая диагональ вдвое больше соответствующего катета.
d1 = 2·15 = 30 (см)
d2 = 2·20 = 40 (см)
Ответ. 30 см, 40 см.
ВК и СМ высоты трапеции
ВС=КМ=10
пусть АВ=х, СD=y
катет, лежащий против угла 30 градусов равен половине гипотенузы
треугольники ABK и MCD пряимоугольные
CM=y/2, AK=x/2
по теореме Пифагора: x^2 - (1/4)*x^2 = (1/4)*y^2
x=(√3/3)*y
MD=y*sin(60) = (√3/2)*y
AK+KM+MD=17
получим систему уравнений:
x/2 + 7 + (√3/2)*y = 17
x=(√3/3)*y
решив которую найдем:
AB=x=5
CD=y=5√3
Ответ: боковые стороны равны 5, 5√3 см
Что такое ЕО и ЕД?
возможно точка Е это центр стороны какой-то. Либо условие не до конца, либо должен быть рисунок
То на крест леж углы равны
1) параллелограмм АВСД: АВ||СД, ВС||АД
AN⊥ABC и KC⊥AВC
Т.к. если прямая перпендикулярна к плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости (AN⊥AC и КС⊥АС)
Плоскость КВС⊥плоскости АВС, т.к. плоскость КВС проходит через прямую КС, перпендикулярную к АВС (согласно теореме: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны).
Аналогично плоскость ANД⊥плоскости АВС, т.к. плоскость ANД проходит через прямую AN, перпендикулярную к АВС.
Т.к. плоскости ANД и КВС, перпендикулярные к одной прямой АС, значит они параллельны.
2) Прямоугольный ΔАВС (∠В прямой)
Из точки S опустим перпендикуляр SO на плоскость АВС.
По условию точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этого треугольника, значит наклонные SA=SB=SC , а следовательно и их проекции на плоскость АВС ОА=ОВ=ОС. Значит О - центр описанной окружности около ΔАВС.
Т.к. в прямоугольном треугольнике центром описанной окружности является середина гипотенузы М, то значит точки О и М совпадают, тогда SM перпендикулярна плоскости АВС