4) угол CВC1 = 30 градусов ( 90 / 3 )
---> BC1B1 = 30 градусов, т.к. ВС || B1C1
CC1 = 130 / 2 = 65 (катет против угла в 30 градусов)))
АВ || A1C1 (как перпендикуляры к параллельным прямым AC || A1B1 )
---> угол ABC1 = BC1A1 (как накрест лежащие при параллельных АВ и А1С1 и секущей ВС1 ) и тогда острые углы прямоугольных треугольников равны: угол АВС = В1С1А1 (АВС = АВС1 - 30°, В1С1А1 = ВС1А1 - 30°)
треугольники АВС и А1В1С1 равны по катету и прилежащему острому углу)))
следовательно, и гипотенузы равны
тогда ВВ1 = СС1 (т.к. ВВ1С1С --прямоугольник)
ВВ1 = 65
ВВ1 + СС1 = 130 (мм)
5) построение треугольника нужно начинать с высоты
провести прямую (первая прямая),
в любой точке построить перпендикуляр (серединный к любому отрезку),
на перпендикуляре от точки пересечения прямых отложить высоту ---это будет первая вершина треугольника
из нее раствором циркуля, равным стороне (любой данной) найти пересечение с первой прямой линией) ---это будет вторая вершина треугольника,
от нее отложить на первой прямой вторую данную сторону ---получили третью вершину)))
Треугольник был бы равнобедренным, если бы был прямоугольным. А он таковым не является. Решение:
пусть угол А = 45 градусов, АВ = 10, АС = 12. Опустим высоту из вершины В, тогда треугольник АВН - прямоугольный и равнобедренный, значит угол АВН равен 90-45=45 градусов, и два квадрата катета (в данном случае это еще и высота треугольника АВС) в сумме дают 10^2=100, то есть 2ВН^2=100 => BH^2=50 => BH = корень из 50, а далее по формуле - полупроизведение высоты (корень 50) и основания (12), то есть
(корень 50 *12)/2= 6 корней из 50 [ШЕСТЬ корней из ПЯТИДЕСЯТИ]
По свойству параллелограмма, AB = CD = 7 см. Диагонали точкой пересечения делятся пополам, т.е. AO = OC = 6 см и BO = OD = 4 см.
Периметр треугольника ABO: P = AB + BO + AO = 7 + 4 + 6 = 17 см
Ответ: 17 см.
Sceч=πR²
R=√(Scеч/π)
R=√(81/3.14)≈5
(R-h)=√(15²-5²)≈14
Значит h≈1
V=πh²(R-h/3)=π(5-1/3)≈15
Треугольник МНК, уголК=37, угол М=69, уголН =180-37-69=74, НР -биссектриса,