Отрезок, проведенный из точки к прямой (к плоскости) и не перпендикулярный к этой прямой (плоскости).<span>В геометрии изучают несколько теорем, в которых фигурируют наклонные: наклонная длиннее перпендикуляра, наклонные равны, если их проекции равны, и др.</span>
О1, О2, О3 - центры окружностей.
Треугольник О1О2О3 - равносторонний, его сторона равна 2r. Тогда площадь этого треугольника равна (2r)^2*V3 / 4 = r^2*V3
Площадь одного сектора равна pi*r^2 / 6
Таких секторов образовано три. Значит, площадь трех секторов равна pi*r^2 / 2
<span>Тогда площадь фигуры, расположенной вне окружностей и ограниченной их дугами, будет равна разности между площадью треугольника О1О2О3 и площадью трех секторов. А это равно r^2*V3 - pi*r^2 / 2 = 0,5*(2V3 - pi)*r^2</span>
4.
Пусть AB∩CD=O.
ΔCAO=ΔBOD по второму признаку равенства треугольников. (∠ACO=∠BDO - условие, CO=OD - условие, ∠COA=∠BOD как вертикальные) ⇒ AC=BD=4
9.
Равны по второму признаку равенства (∠CAO=∠BDO - условие, AO=OD - условие, ∠CAO=∠BOD как вертикальные)
11.
ΔAED - равнобедренный (т.к. углы при основании - ∠EAD и ∠EDA - равны.) Из равнобедренности имеем: AE=ED=5
Рассмотрим треугольники BAE и CED. Они равны по второму признаку равенства (∠BAE=∠CDE - условие, AE=ED - из равнобедренности AED, ∠BEA=∠CED - как вертикальные) ⇒ BE=CE ⇒ AC=BD=5+2=7