1) треугольник прямоугольный, т.к. сумма углов треугольника 180 градусов, 180-(25+65)=90-третий угол
2)сумма 2-х острых углов прямоугольного треугольника равна 90 градусов, значит 90-68=22-второй угол
3) т.к. один угол прямоугольного треугольника 60 градусов, то другой - 90-60=30, а против угла=30 лежит меньший катет, равный половине гипотенузы. пусть гипотеза=х,тогда меньший катет-0.5х, получим уравнение х+0.5х=33.6 => х=22.4-гипотеза
4) 9.7-1.5=8.2
5) т.к. прямая пересекает отрезок посередине, то расстояние от прямой до точки N и до точки M - одинаковы, т.е. 14см
6) 1. Если внешний-125, то смежный с ним- 180-125=55, сумма острых углов прямоугольного треугольника равна 90, значит 2-й угол - 90-55=35
2. пусть меньший угол-х, тогда больший-4х,получим уравнение х+4х=90 => х=18,т.е. 1 угол -18, 2-й - 4*18= 72
7) т.к. угол В=60, тогда угол А=90-60=30, ВN-биссектриса угла АВС=>угол NBC= углу АВN=30,
рассмотрим треугольник NBC- прямоугольный, значит напротив угла 30 градусов лежит меньший катер, равный половине гипотезы,т.е. гипотеза ВN= 7*2=14,
рассмотрим треугольник АВN: угол АВN=30, угол А=30 (по см. ранее)=>треугольник равнобедренный, т.к.углы при основании равны=>стороны ВN= АN=14
АС= СN+ АN=7+14=21
Тогда зачем помогать если ты решила
Углы при основании равнобедренного треугольника:
∠BAC = ∠BCA = (180° - ∠ABC)/2 = (180° - 48°)/2 = 66°
Рассмотрим четырехугольник AEOD, известно что касательная к окружности перпендикулярная к радиусу, проведенному в точку касания, т.е. ∠AEO = ∠ADO = 90°. Сумма углов четырехугольника равна 360°
∠DOE = 360° - 66° - 90° - 90° = 114°
Ответ: 114°
См фото.
Пусть АМ=х, МD=2х, сторона квадрата АВ=3х.
Площадь квадрата равна S1=3х·3х=9х².
Площадь треугольника АNМ равна S2=0,5·1,5х·х=0,75х².
Найдем отношение площадей S1/S2=0,75х²/9х²=1/12.
Ответ: S1 составляет одну двенадцатую часть площади квадрата S2.
Периметр ромба равен 48, ответ на фотке