Полупериметр
p = 1/2*(13+14+15) = 42/2 = 21 см
Площадь по формуле Герона
S = √(21*(21-13)(21-14)(21-15)) = √(21*8*7*6) = √(7²*4²*3²) = 7*4*3 = 84 см²
Центр полуокружности лежит на биссектрисе угла меж сторонами 13 и 14
Радиус полуокружности r
Площади двух треугольников, на которые биссектриса делит исходный, равны
S₁ = 1/2*13*r = 13/2*r
S₂ = 1/2*14*r = 7*r
Площади двух дочерних треугольников в сумме равны исходному
S = S₁ + S₂
<span>13/2*r + 14/2*r = 84
</span>27r = 84*2
r = 56/9 см
Площадь половины окружности
S₃ = π*r²/2 = π*(56/9<span>)²/2 = 1568</span>π/81 см²
1) Четырехугольник МОКС:
∠МОК=∠АОВ=120°
∠М=∠К=90°,
значит ∠С=60°.( сумма всех углов четырехугольника 360°).
По формуле
S(Δ)=(1/2)·b·c·sinα
находим
S( ΔABC)=(1/2)· AC·BC·sin ∠C=10√3,
2) Из прямоугольного треугольника АСК по теореме Пифагора
АК²=20²-12²=256
АК=16
Если провести вторую высоту из точки В, то получим два равных между собой треугольника ( трапеция равнобедренная по условию) и прямоугольник.
Пусть КD=x, тогда верхнее основание ВС=16-х, нижнее основание AD=16+x
S( трапеции)=(BC+AD)·CK/2=(16-x+16+x)·12/2=32·12/2=16·12=192.
3)∠M=∠Q =60°( трапеция равнобедренная MN=PQ).
ΔMNK - равнобедренный (MN=NK=MQ/2)
Значит ∠MKN=60°, а так как сумма углов треугольника 180°, то и
∠MNK=60°.
Треугольник MNK- равносторонний.
∠KNP=120°-∠MNK=120°-60°=60°
В треугольнике NPK
NP=MK=NK, значит это равнобедренный треугольник с углом 60° при вершине, что означает, треугольник равносторонний.
ΔMNK=ΔKNP.
Все стороны этого треугольника равны между собой.
КР=NK=NP.
NP=KQ
Треугольники КPQ и КNP также равны между собой.
Все три треугольника равны между собой
S( трапеции)=3·5=15
Центральный угол n-угольника равен α = 360/n.
По теореме косинусов a^2 = R^2 + R^2 - 2R*R*cos α = R^2*(2 - 2cos α)
Отсюда R^2 = a^2/(2 - 2cos α)
R = a/√[2 - 2cos(360/n)]
По теореме Пифагора
r^2 = OM^2 = R^2 - (a/2)^2 = R^2 - a^2/4 = a^2/(2 - 2cos α) - a^2/4 =
= a^2*[2/(4 - 4cos α) - 1/4] = a^2*(4 - 4cos α)/(2 - 1 + cos α)
r = a*√[(2 - 2cos α)/(1 + cos α)] = a*√[(2 - 2cos(360/n))/(1 + cos(360/n))]
На чертеже точки касания N и N1 изображены совпадающими, но это еще надо доказать. Поэтому СНАЧАЛА я не считаю их совпадающими. То есть окружность O1 касается AC в точке N, а окружность O2 - в точке N1 (слова "с центром" дальше буду опускать, если и так ясно).
Для треугольника ABC точки касания с O1 делят стороны на три отрезка AN, CN и еще один (точнее, два равных) из вершины B. Я обозначу его например буквой x.
Тогда очевидно
AN + CN = AC;
AN + x = AB;
CN + x = BC;
Если вычесть из второго третье, получится AN - CN = AB - BC; если теперь сложить это с первым, то
AN = (AC + AB - BC)/2;
Точно так же для треугольника ACD получается
AN1 = (AC + AD - CD)/2; и нигде не предполагается, что AN = AN1; это надо доказать.
Весь четырехугольник ABCD является ОПИСАННЫМ, то есть AD + BC = AB + CD;
или AD - CD = AB - BC; или AC + AD - CD = AC + AB - BC; то есть AN = AN1, и точки N и N1 совпадают, это просто одна точка N.
Последствия этого очень велики. :) Окружности O1 и O2 касаются, AC является общей касательной, проведенной в точке касания N окружностей O1 и O2, и линия центров O1O2 перпендикулярна AC.
<em>Важно! - пока нигде не использовано, что ABCD - трапеция! Этот результат справедлив для любого выпуклого описанного четырехугольника.</em>
Поэтому (см. чертеж) ∠KO1O2 = <span>∠CAD (стороны углов перпендикулярны), и треугольники KO1O2 и ACP подобны. CP - высота трапеции. Она равна
CP = 2R = 40;
сумма радиусов окружностей равна O1O2 = 25; отсюда легко найти KO1 = 40 - 25 = 15; получился "египетский" треугольник :) то есть KO2 = 20;
Ну, и из подобия KO1O2 и ACP AC = 50 (поскольку СP = 2*KO2 :) )</span>
<span>Диагонали ромба, пересекаясь, образуют треугольники с углами 90, 60 и 30 градусов. В таком треугольнике меньший катет (половина меьшей диагонали ромба) равен половине гипотенузы (стороне ромба), то есть равен </span>24/4=6.
<span>Тогда вся меньшая диагональ равна 6*2=12.</span>
<span>Ответ: 12 см</span>