1)) АВ < АС + СВ
2)) (2; 4) т.к. решение системы (3; 5)
Есть формула угол = 180(n-2)/n
подставим числа, получается 180*(15-2)/15=180*13/15=156
не забудь отметить как лучший ответ
диаметр=24,значит радиус=12,из треугольника AHC по теореме пифагора находим катет h=
<span><em>Средняя линия трапеции, равная 10 см, делит площадь трапеции в отношении 3:5.<u> Найдите длины оснований этой трапеции.</u></em><u> </u>
-------
См. рисунок 1 приложения.
В трапеции АВСD средняя линия МН делит её высоту пополам.
Пусть ВС=а, АD=b
Тогда
S MBCH= h*(a+10):2
S AMHD=h*(b+10):2
<span>S MBCH : S AMHD=3:5
</span><span>[(a+10):2]:[(b+10):2]=3:5
</span>3b+30=5a+50
3b=5a+20
средняя линия трапеции равна полусумме оснований.
(a+b):2=10
а+b=20
b=20-a
3b=60-3a
приравняем значения
3b:<span>5a+20=60-3a
</span>8a=40
a=5
b=20-5=15
BC=5 cм AD=15 см
________________________________________________________________________________
<em>В трапеции длины оснований равны 6 см и 20 см, а длины боковых сторон равны 13 см и 15 см. <u>Найдите площадь трапеции</u>.</em>
-----
См. рисунок 2 приложения.
Опустим из В и С перпендикуляры ( высоты) ВН и СМ на АD.
Тогда НМ=6 см
АН+МD=20-6=14
МD=x, АН=14-x
Из прямоугольного треугольника АВН
<span>ВН²=13²-(14-х)²
</span>Из прямоугольного треугольника СМD
<span>СМ²=15²-х²
</span><span>ВН=СМ ⇒
</span>13²-(14-х)² = 15²-х²
откуда после вычислений получим
28х=252
х=9
<span>СМ²=15²-9²
</span>СМ=√(225-81)=12
<span>S ABCD=(6+20)*12:2=156 cм²
</span></span>--------
<em>В треугольнике АВС внешний угол при вершине А равен 125º, а внешний угол при вершине В равен 59º. <u>Найдите угол С.</u> Ответ дайте в градусах</em>.
Внешний и внутренний углы при одной вершине треугольника являются смежными. <span>Сумма смежных углов равна 180º ⇒
</span>Угол А=180º-125º=55º
Внешний угол при В равен сумме углов А и С.
<span>Угол С=59º-55º=4º</span>
Розв*язання:
∠ВАЕ=∠ЕАН за умовою, ∠АЕВ=∠ЕАН як внутрішні при паралельних прямих, тоді ∠АЕВ=∠ВАЕ і ΔАВЕ - рівнобедрений.
Отже ВЕ=АВ=13 см.
∠НДЕ=∠ЕДС за умовою, ∠НДЕ=∠СЕД як внутрішні при паралельних прямих, тоді ∠СЕД=∠ЕДС і ΔЕСД - рівнобедрений.
Отже ЕС=ЕД=20 см.
ВС=ВЕ+ЕС=13+20=33 см.
ВК=СМ=12 см.
Розглянемо ΔАВК. АК=√(13²-12²)=√(169-144)=√25=5 см.
Розглянемо ΔСМД. МД=√(20²-12²)=√(400-144)=√256=16 см.
КМ=ВС=33 см; АД=5+33+16=54 см.
S=(33+54):2*12=528 cм².