Нужно составить пропорцию, 15/10=21/14=x/12
х=24
Построение. Проведем высоту основания ВН. В правильном треугольнике это и медиана и биссектриса. Через центр основания J проведем прямую, параллельную стороне АС. Получим точки K и L на пересечении этой прямой с сторонами АВ и ВС соответственно. Через центр сферы О проведем прямую, параллельную стороне АС. Восстановим перпендикуляры из точек К и L и на пересечении этих перпендикуляров с проведенной прямой получим на боковых гранях призмы точки M и N. Проведя через точки А и N, С и М получим линии пересечения секущей плоскости и боковых граней призмы. Сечение призмы - равнобедренная трапеция.
Центр основания призмы J делит высоту основания в отношении 2:1, считая от вершины В (свойство медианы). Высота правильного треугольника ВН = (√3/2)*а (формула), отрезок НJ=(1/3)*ВН = (√3/6)*а. Из треугольника СОН найдем отрезок ОН по Пифагору:
ОН = √(OC²-HC²) = √(R²-a²/4) = (√(4R²-a²))/2.
Тогда OJ = √(OH²-HJ²) = √((3R²-a²)/3). Высота призмы равна
2√((3R²-a²)/3) (так как О - центр сферы).
Треугольники HOJ и HQG подобны с k=OJ/QG =1/2. => NM - средняя линия трапеции ASTC. NM = KL = (2/3)*a (из подобия треугольников АВС и KBL). Тогда ST=(1/3)*a.
Площадь сечения = площадь трапеции ASTC.
Sastc = (AC+ST)*HQ/2 = 2a√(4R²-a²)/3.
Ответ: Sastc = 2a√(4R²-a²)/3.
Для проверки: есть следствие из теоремы об описанной призме: радиус сферы, описанной около правильной треугольной призмы с высотой h и ребром основания a равен R=√(a²/3+h²/4). Подставив найденную высоту призмы, получим R=R.
Скалярное произведение векторов равно произведению их длин и косинуса угла между векторами. Угол между векторами от 0 до 180 градусов.
<span>(a−b)^2+(a+2b)^2=20 - раскроим скобки по правилу действий с числами.
</span>(***) a²-2ab+b²+a²+4ab+4b²=20, а²=1, b²=4 (квадрат вектора равен квадрату его длины)
произведение векторов a*b=IaI*IbI*cosα, a*b=1*2*cosα
подставляем в равенство (***)
1-4cosα+4+1+8cosα+16=20
4cosα=-2
cosα=-1/2, т.к. cosα<0, то α>90⁰
α=180-60=120
Одна формула площади
S=2πr(r+h)=2*3*7*(7+2)=126*3=378(см²)
Ответ: 378(см²).
В прямоугольном треугольнике ВСД острый угол СВД равен 45°, значит он равнобедренный. ВД=СД=ВС/√2=6/√2=3√2 см.
В прямоугольном треугольнике АВД катет ВД лежит напротив угла в 30°, значит АВ=2ВД=6√2 см.
АД=√(АВ²-ВД²)=√(72-18)=√54=3√6 см - это ответ.