...........................................
Найдем 2 катет по теореме Пифагора
a²+b²=c²
b²=c²-a²
b²=20²-16²
b²=144см²
b=12см
т.к. призма прямая, то диагональ боковой грани(d) со 2 катетом(b) и боковым ребром(r) образуют прямоугольный треугольник, где d является гипотенузой.
По т.Пифагора
d²=b²+r²
r²=d²-b²
r²=13²-12²
r²=25см²
r=5см
Ответ: длина бокового ребра призмы равна 5см
Уравнение прямой ax+by+c=0. Чтобы найти ур-е прямой АВ с заданными координатами, нужно решить систему ур-ий, подставить в уравнение прямой сначала координаты точки А,а в другое ур-е координаты точкиВ
.a*(-3)+b*6+c=0
a*2+b*5+c=0 из первого ур-я вычтем второе
-5a+b=0. b=5a. подставим это значение во второе уравнение системы, получим 2а+5а*5+с=0, 2а+25а+с=0, с= -27а, Выразили все неизвестные через а: в=5а, с= -27а. Теперь подставим эти значения в общее ур-е прямой
ах+by+c=0
ax+5ay-27a=0. разделим обе части ур-я на "а" Получим уравнение прямой АВ : х+5у-27=0
Теперь найдем точки пересечения АВ с осями координат. Для этого сначала приравняем х=0 и решим ур-е 5у-27=0, у=5,4 (0; 5,4)
теперь у=0 и решим ур-е х-27=0, х=27 (27; 0)
Площадь трапеции равна произведению полусуммы её оснований на высоту: S=BH*0,5*(BC+AH+HD)=14*0,5*(5+7+14)=7*26=182