А^2=15^2+20^2
а= корень из 625
а=25 см
ответ: гипотенуза равна 25 см
По теореме синусов СК=CD*sinD=12√2*sin45°=(12√2)*(√2/2)=12см.
СК-высота трапеции.
В трапецию можно вписать окружность тогда, когда сумма длин оснований равна сумме длин боковых сторон.
АВ+CD=BC+AD
АВ=СК=2⇒ AB+CD=12+12√2=12(1+√2)cм⇒
BC+AD=12(1+√2)
S трап=1/2(ВС+AD)*СК=1/2*12*(1+√2)*12=72(1+√2) см²
Треугольник – самая простая замкнутая прямолинейная фигура, одна из первых, свойства которых человек узнал еще в глубокой древности, т. к. эта фигура всегда имела широкое применение в практической жизни.
Изображения треугольников и задачи на треугольники встречаются во многих папирусах Древней Греции и Древнего Египта.. Еще в древности стали вводить некоторые знаки обозначения для геометрических фигур.
Древнегреческий ученый Герон (I век) впервые применил знак вместо слова треугольник.
Прямоугольный треугольник занимал почетное место в Вавилонской геометрии. Стороны прямоугольного треугольника: гипотенуза и катеты.
Термин «гипотенуза» происходит от греческого слова «ипонейноуза», обозначающее «тянущаяся над чем-либо», «стягивающая». Слово берет начало от образа древнегреческих арф, на которых струны натягиваются на концах двух взаимно-перпендикулярных подставок. Термин «катет» происходит от греческого слова «катетос», которое означает начало «отвес», «перпендикуляр».
Евклид говорил: «Катеты – это стороны, заключающие прямой угол».
В Древней Греции уже был известен способ построения прямоугольного треугольника на местности. Для этого использовали веревку, на которой были завязаны 13 узелков, на одинаковом расстоянии друг от друга. Давайте и мы попробуем построить прямоугольный треугольник.
Сумма всех углов = 180*
1) 180 - 92 = 88* - сумма оставшихся углов
2) 88 : 2 = 44*
Ответ. Каждый из остальных углов равен 44*