Основанием четырёхугольной пирамиды SABCD является прямоугольник ABCD, где AB = 2√3, BC = 2√6. Основание высоты пирамиды - это центр прямоугольника. Из вершин А и С опущены перпендикуляры АР и CQ к ребру SB.
1. Докажите, что P - середина отрезка BQ
2. Найдите угол между гранями SBA и SBC, если SD = 6
Боковые ребра пирамиды равны (так как вершина проецируется в центр основания).
Значит АS=BS=CS=DS=6.
Грани - равнобедренные треугольники.
а) Рассмотрим равнобедренный треугольник АSВ. В нем высота SH1, опущенная на основание AB по Пифагору равна SH1=√(SA²-AH1²)= √33.
Соответственно, площадь грани АSB равна Sasb=(1/2)*AB*SH1=√99.
Тогда АМ (высота к боковой стороне BS) равна АP=2Sasb/SB или
АP=2√99/6=√99/3. МВ по Пифагору равно PВ=√(АВ²-АP²) или
PВ=√(12-99/9)=√(9/9)=1.
Точно также в треугольнике ВSC имеем:
SH2=√(36-6)=√30.
Sbsc=(1/2)*BC*SH2=√6*√30=6√5.
CQ=2Sbsc/SC или CQ=2√5. Тогда
BQ=√(BC²-CQ²) или BQ=√(24-20)=√4=2.
Итак, доказано, что BQ=2*BP, то есть точка P - середина BQ.
б) Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и
перпендикулярно ребру провести из неё лучи в каждую из граней.
Возьмем на ребре BS точку Р и проведем из нее в гранях ASB и CSB
перпендикуляры. Один из них нам уже знаком - это отрезок АP. Второй - отрезок РK, который будет параллелен отрезку СQ и равен его половине (так как PK - средняя линия треугольника BQC, поскольку точка P - середина отрезка BQ - доказано выше). По Пифагору АK=√(АВ²+ВK²) или АK=√(12+6)=3√2.
Тогда по теореме косинусов искомый угол АPK равен:
Cosα = (b²+c²-a²)/2bc. Или
Cosα = (АP²+PK²-AK²)/2*АP*PK.
Cosα = (99/9+5-18)/(2*(√99/3)*(√5))=-2/81,97=-0,135.
Мскомый угол равен arccos(-0,135) или α≈97,76°.
Найдём длину гипотенузы через длины катетов 26=√(x²+(x+14)²)=√(2*x²+196+28*x)⇒2*x²+28*x+196=26²⇒2*x²+28*x-480=0. Дискриминант D=28²+4*2*480=4624⇒ x1=(-28+68)/4=10, x2=(-28-68)/4=-24 - не подходит, так как длина не может быть отрицательной. Таким образом один катет имеет длину х=10 единиц, другой длину х+14=24 единицы. Площадь найдём как полупроизведение катетов S=10*24/2=120 кв. единиц.
№29.
угол КNM=180°-100°-20°=60°
угол MNP=180°-60°=120°(т.к. углы смежные дают в сумме 180 градусов)
угол M=N(т.к. треугольник равнобедренный)=(180°-120°):2=30°
№31
угол ADB=180°-130°-20°=30°
угол CBD=180°-130°-15°=35°
угол ADC=360°-30°-35°=295°
в №31 не уверена, что правильно
Концентрические сферы обладают общим центром.
Площадь внешней сферы: S=4πR² ⇒ R=(S/4π)=√(144π/4π)=6 см.
Площадь внутренней сферы: s=4πr² ⇒ r=√(s/4π)=√(16π/4π)=2 см.
Толщина капсулы - это разница между радиусами найденных сфер. Так как центр сфер общий, то толщина стенок капсулы во всех местах одинаковая и равна R-r=6-2=4 см - это ответ.