В прямоугольном треугольнике АТВ (АТВ = угол DTB =90°, так как опирается на диаметр DB SinA = ВТ/АВ = 9√3/12√3= 3/4 = 0,75. По таблице синусов находим, что это угол 48,6°
В треугольнике DTO угол TDO=DTO (т.к. DTO - равнобедренный OD=OT =R) и = ABD (т.к. DAB - равнобедренный - половина ромба), а тогда угол TOD = DAB = 48,6°.
Площадь сегмента DT по формуле Sdt = R²/2(π*A°/180° - SinA) = 1/2*8,48²(3,14*48,6/180 -0,75) ≈ 3,5. Но таких сегментов четыре, значит площадь части круга, расположенного вне ромба равна 3,5*4 = 14.
Пусть х-одна сторона, тогда х+9 - другая. уравнение: х+х+9+х+9=45.
х=9.- одне сторона. 9+9=18другая сторона
<u>Задача 4
</u><span><em>К окружности с центром в точке О проведены из точки В касательные АВ и ВС (А и С - точки касания), Окружность пересекает отрезок ОВ в точке Т. ∠АВТ=30°. </em><u><em>Доказать, что Т - точка пересечения биссектрис ∆ АВС.</em></u></span>
----------------------------------------------------
Нарисуем окружность и касательные ВА и ВС.
Соединим А и С с центром окружности и с точкой В.
<em>АВ=ВС</em> как отрезки касательных из одной точки,
АО=ОС - радиусы,
ОВ - общая сторона.
<u>∠ОВС=∠АВО=30°</u>.
Точка Т лежит на ВО
<em>ВО</em> - гипотенуза треугольника, в котором
катет, противолежащий углу 30°, равен R.
ОТ - радиус =><em> ВТ=ОТ.</em>
Проведем АК и СР через точку Т до пересечения с АВ и АС.
Треугольники<u> АОТ и ТОС</u> образованы радиусами, они <u>равнобедренные</u> и <em><u>равносторонние,</u></em> так как центральные углы в них являются и углами прямоугольных треугольников, в которых один из острых углов ( при В) равен 30°.
Следовательно, <u>центральные углы АОТ и ТОС равны 60</u>°.
АС диагональ ромба и является биссектрисой углов ромба АОСТ.=>
∠ ТАС=∠ТСА=30° и отсюда<u><em> СР и АК - биссектрисы углов А и С.</em></u>
Но и<u><em> ВМ биссектриса треугольника АВС</em></u>.
<em>Точка Т является точкой пересечения биссектрис треугольника АВС.</em>
==================================================================
<u>Задача 5</u>
<span><em>Вершины А, В, С и Д куба АВСДА₁В₁С₁D₁ лежат на окружности. Точкa О - середина ребра АD. Хорда окружности проходит через точку О и параллельна отрезку АС . </em><u><em>Вычислить длину этой хорды</em></u><em>, если площадь поверхности куба равна 384 см² </em>
---------------------------------------
О</span>бозначим концы хорды К и Р
Проведем в окружности диаметр ВD, который является <u><em>хордой и диагональю вписанного квадрата.</em></u>
Хорда КР делит диаметр на две части ВМ и МD.
Так как КР содержит среднюю линию треугольника АDС,
высота треугольника=радиус <u>ЕD разделен в точке М пополам</u>.
MD=1/4 диаметра окружности,
ВМ=3/4 диаметра
<em>Произведения отрезков каждой хорды, получившихся при пересечении этих хорд, равны. </em>
<em><u>Диагонали квадрата при пересечении делятся пополам и перпендикулярны друг другу.
</u></em>Хорда параллельна диаметру. <em><u>
Диаметр делит хорду, к которой он перпендикулярен, пополам. </u></em>
Пусть КМ=МР=х
Тогда х²=1/4 D×3/4 D=(3/16)D
х=0,25√3 D
КР=2х=0,5√3 D
Длина диаметра окружности равна диагонали грани куба.
Ребро куба найдем из площади его поверхности.
Граней у куба 6, площадь каждой а²=384:6=64см²
Ребро куба равно а= √64=8см
Диагональ грани равна 8√2см (d=a√2 )
<u>Длина хорды</u> <em>КР</em>=(0,5√3)×8√2=<em> 4√6 см</em>
Пусть неизвестный катет = х, тогда гипотенуза = 2х. По теореме Пифагора:
(2х²) - х² = 6²
4х² - х² = 36
3х² = 36
х² = 12
х = √12 = 2√3
Ответ: 2√3
По теореме синусов
a/sin A=b/sin B=c/sin C
sin(180-45)=sin 45
27/sin 45=9/sin B
<span>Sin B=sin
45*9/27=0,7071*9/27=0,2357</span>
<span>Угол B примерно
равен 13 градусам</span>
Сумма углов треугольника 180
<span> Угол С примерно равен 180-13-138=29 градусов</span>
<span>a/sin A=c/sin C
</span>
c=a*sin C/sin A=27*0,4848/0,7071=19
<span>Ответ:с=19; угол С=29; угол B=13</span>