Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство. Пусть дана трапеция АВСD и средняя линия КМ. Через точки В и М проведем прямую. Продолжим сторону AD через точку D до пересечения с ВМ. Треугольники ВСм и МРD равны по стороне и двум углам (СМ=МD, РВСМ=РМDР - накрестлежащие, РВМС=РDМР - вертикальные) , поэтому ВМ=МР или точка М - середина ВР. КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР:
<span>КМ = 1/2АР=1/2(АD+DF)=1/2(AD+BC) </span>
Орби́та (от лат. orbita — колея, дорога, путь) — траектория движенияматериальной точки в наперёд заданной системе пространственных координат для заданной в этих координатах конфигурации поля сил, которые на неё действуют. Термин был введён Иоганном Кеплером в книге «Новая астрономия»(1609)[1].
Yt pyf. ghfdbkmyj bkb ytnS=полусумме оснований на высоту S=1/2( a+b)*h средняя линия равна полусумме оснований,=
1/2( a+b). Следовательно нужно найти высоту.
Проведём из точки С высоту СН. Рассмотрим треугольник СНD- он п/у. Т. к Угол D=45, следовательно угол НСD= 45 ( свойство углов прямоугольного треугольника). Следовательно, он не только прямоугольный но и равнобедренный. CD- это гипотенуза. Обозначим один катет за х, тогда и другой тоже х( т к треугольник р/б)
По теореме Пифагора х² + х²= 40².
2 х²=1600.
х²=800.
х=20√2.
S= 42*20 √2. S= 840√2