По т.Пифагора)))
получается "египетский" треугольник
катеты 3 и 4
гипотенуза 5
Площадь круга Sк=πR², R=√Sк/π=√100π/π=10
<span>Центр описанной окружности прямоугольного треугольника совпадает с серединой его гипотенузы
</span>Гипотенуза с=2R=2*10=20
Катеты а и b равны:
а+b=48-20=28 (исходя из периметра)
а²+b²=20² (по т. Пифагора)
Решаем систему:
а²+(28-а)²=400
а²+784-56а+а²=400
а²-28а+192=0
D=784-768=16=4²
а₁=(28+4)/2=16
а₂=(28-4)/2=12
Площадь треугольника S=ab/2=16*12/2=96
∠BDC = 1/2 ∪BC = 140°/2 = 70° как вписанный, опирающийся на дугу ВС
∠DCA =1/2 ∪DO = 52°/2 = 26° как вписанный, опирающийся на дугу DO
∠BDC - внешний угол ΔADC. А внешний угол треугольника равен сумме двух внутренних, не смежных с ним:
∠BDC = ∠DAC + ∠DCA
∠DAC = ∠BDC - ∠DCA = 70° - 26° = 44°
".','.".",','".".',,'"."",','.."".,'
Треугольник abc - равнобедренный,(т.к. угол с =90,а угол а=45,след.в=45 по сумме углов треугольника),означает bс=ас
Гипотенуза одинакова 8,по аксиоме пифагора сумма квадратов катетов равна 64(8 в квадрате),след. катет равен корню из 32
bm-медиана,потому мс=0,5ас;
рассмотрим треугольник bcm: угол с равен 90,мс=0,5ас,bc=корню из 32
по теореме пифагора в новеньком треугольнике ищем гипотенузу(bm):
гипотенуза=корень из((корень из 32) в квадрате+(корень из 32,деленный на два)в квадрате=корень из 40=два корня из 10