D^2=(x-a)^2+(y-b)^2
1.AB^2=(0-2)^2+(3-3)^2=4
AB=2
2.MN^2=(-2-4)^2+(-5-(-5)^2=36
MN=6
Формула объёма пирамиды <em>V=S•h:3</em>. Пусть данная пирамида SABCD, SM=L– апофема, ЅН - высота, угол ЅМН= α
Пирамида <u>правильная</u>, следовательно, её основание - правильный многоугольник, грани - <u><em>равнобедренные</em></u><em> треугольники</em>, вершина проецируется в центр основания.
<u> Апофемой</u> называют <em>высоту грани</em><u><em>правильной</em></u> пирамиды. Апофема ЅМ - перпендикулярна АВ, её проекция НМ – перпендикулярна АВ ( <em>по т. о 3-х перпендикулярах</em>).⇒ ∆ ЅНМ – прямоугольный, ВМ=АМ, КН=МН и КМ параллельна и равна ВС. Высота <em>ЅН</em>=L•sinα. <em>BC</em>=2NM=2•L•cosα ⇒S(ABCD)=4L²•cos²α <em>V</em>=4L²•cos²α•L•sinα:3=4L³•cos²α•sinα:3,
решение полностью представлено на картинке.