Я округлял, что бы не возиться с дробями. На самом деле угол будет немного больше 90 градусов.
Центральный угол в 2 раза больше вписанного, если они опираются на одну дугу, поэтому угол АКМ=1\2 угла АОМ=40 градусов.
Так как треугольник равнобедренный, а основание AC, то углы A и C равны между собой.
A + C = 156
A = C = 156 : 2 = 78
B = 180 - 156 = 24
Ответ: A = 78, B = 24, C = 78
4) В задании не оговорено, но по рисунку можно предположить, что отрезок АА1 перпендикулярен плоскости альфа.
Тогда треугольники АСА1 и АВА1 прямоугольные.
Сторона СА1 = 10*cos 60° = 10*(1/2) = 5.
Сторона АА1 = 10*sin 60° = 10*(√3/2) = 5√3.
Сторона ВА1 = √(139 - 75) = √64 = 8.
Искомый угол x = ВА1С находим по теореме косинусов.
cos x = (5² + 8² - 7²) / (2*5*8) = 40/80 = 1/2.
Ответ: х = arc cos(1/2) = 60 градусов.