320/80=4сантиметра
4*16=64см
АВ перпендикулярно ВО, угол АВО = 90º, по теорема Пифагора находим АО.
АО^2= 18^2 + 80^2 = 6724
АО = 82
так как АО состоит из АD + DO, где DO, как и ВО - радиус, то АD = 82 - 80 = 2
Получился прямоугольный треугольник, у которого гипотенуз а- диагональ параллелепипеда, а катеты - его искомая высота и диагональ основания. По условию, угол между данной диагональю и диагональю основания равен 30 градусом, а напротив этого угла лежит высота. Значит, она в 2 раза меньше гипотенузы, т.е.
H = 16/2 = 8 см
АВ=СВ как стороны равнобедренного тр-ка,
ВМ- общая сторона.
т.к. в равнобедренном тре-ке медиана проведенная к основанию является также и биссектрисой, то углы АВМи СВМ равны.
Треугольники ВМР и AMD -- подобны
(по двум углам: одна пара углов -- вертикальные,
вторая -- накрест лежащие при секущей АР и параллельных сторонах параллелограмма))
S(ABD) = 84 / 2 = 42 (диагональ делит параллелограмм на два равных треугольника))
S(AMD) = 42-14 = 28
треугольники АВМ и АМD имеют общую высоту из вершины А,
Площади треугольников с равными высотами относятся как основания))) -- известная Теорема.
S(ABM) / S(AMD) = 14 / 28 = BM / MD = 1 / 2 -- это коэффициент подобия треугольников ВМР и AMD
Площади подобных треугольников относятся как квадрат коэффициента подобия -- еще одна известная Теорема)))
S(BMP) = 28/4 = 7