А вот я так думаю, что объем пирамиды можно сосчитать так
V = (6*6/2)*6/3 = 36.
Это не тетраэдр. Такая пирамида получается, если взять три взаимно перпендикулярные ОСИ и провести плоскость, отсекающую на осях отрезки, равные 6.
Прямоугольный треугольник с катетами 6 (один из трех) принимается за "основание", а перпендикулярное плоскости этого треугольника третье ребро длины 6 - за высоту, и все дела.
Треугольник МКА = треугольнику РТВ, РВ=АК,
Треугольник АМР=треугольнику КВТ , КТ=МР, ТВ=МА, угол КТВ=углу АМР как внутренние разносторонние, АР=КВ
Если в четырехугольнике противоположные стороны попарно равны то такой четырехугольник параллелограмм (признаки параллелограмма)
Диаметр круга радиусом 2 см совпадает с высотой, проведенной из вершины прямогоугла равнобедренного треугольника.Найдите площадь части круга, расположенной вне треугольника.
Сделаю свой рисунок.
Обозначим точки пересечения окружности с треугольником М, К,точку касания с основанием треугольника - D.
<u><em>Соединим все эти точки</em></u>.
Высота треугольника, как медиана прямоугольного треугольника, равна половине основания.
ВD=AD=DC
∆ АDВ= ∆ ВDС.
МК - диаметр окружности и средняя линия ∆ АВС,т.к. проходит через центр окружности.
МК=2 см
АМ=МВ, ВК=КС, МD=DK
МВКD - квадрат, <u><em>диагонали которого равны диаметру окружности 2 см</em></u>.
<em>Площадь квадрата равна половине произведения его диагоналей.</em>
<em></em>
S МВКD=2*2:2=2 см²
<u>S окружности</u> = πr²=4π
Площадь <u><em>четырех сегментов круга вне</em></u> квадрата МВКD равна
S окружности минус S МВКD =4π-2
Площадь сегментов вне треугольника равна половине площади четырех сегментов вне квадрата МВКD и равна:
<em>(4π-2):2=(2π-1 )см²</em>
Площадь треугольника можно найти: половина произведения двух сторон на синус угла между ними, то есть в данной задаче:
Ответ: S=50