Ответ на рисунке что и требовалось доказать
Рисунок в файле
не будем мудрствовать лукаво, а воспользуемся формулой R=(a*b*c)(4*S)
1) из треуг. АВС ( а он равнобедренный) найдем АО₁
АО₁/О₁L=(AO₁+O₁O₂)/O₂M AO₁/6=(AO₁+6+24)/24 AO₁=10
Тогда высота АК=10+6=16
2) прямоугольный треугольник ALO₁ - гипотенуза=10, катет =6, значит, другой катет AL=8 (либо по т. Пифагора, либо потому что треуг "египетский")
3) из подобных треугольников АLO₁ и АKB
O₁L/AL=BK/AK 6/8=BK/16 BK=12 тогда ВС=2ВК=24
4) находим АВ (тоже по египетскому треуг АВ=20
Из 3-уг АВС по формуле находим
R=20*24*20/(4*24*10/2) =15
tgA*ctgA=1 x*2=1 x=1/2=0.5
тот же принцип и в б)tgA*ctgA=1 x*0.2=1 x=1*(5/1)=5
везде x=tgA 0.2=1/5
y=5/x-3
Область определения - все возможные значения x.
x-3≠0
x≠3
x - любое число, кроме 3
<span> Пусть один из углов при основании будет равен а. тогда рассматриваем треугольник adc, где угол d= углу d (дано). Составляем уравнение а + а + а/2 = 180 град. (сумма всех углов треугольника равна 180 град. 2а + а/2 = 180 град. 4а + а = 180 град. 5а = 180 град. а = 72 град. => угол ВАС = углу ВСА = 72 град. Рассмотрим треугольник АВС. Так как сумма всех углов равна 180 град. => угол АВС = 180 град. – (72 град. + 72 град.) = 36 град. Ответ: 72 град., 72 град., 36 град.</span>