<span>Решение:Пусть длина равна х,тогда ширина (17-х) По т.Пифагора имеем:x²+(17-x)²=169 x²+289-34x+x²-169=0 2x²-34x+120=0 x²-17x+60=0 x1=12,длина прямоугольника x2=5,ширина прямоугольника думаю так </span>
Нарисуем ромб со сторонами A, B, C, D.
Диагональ AD=8, CB=6, эти диагонали пересекаются в О. АО=4, ОВ=3, угол О=90 градусов
По теореме Пифагора
АВ(в квадрате)=АО(в квадрате)+ОВ( в квадрате)
АВ(в квадрате)=16+9
АВ=5
Сторона ромба равна 5
Угол ABC = углу AEC. Значит, AEC = 120 градусов.
Угол AEC и угол BCE - внутр. одностор. при паралл. прямых BC и AD и секущей EC.
Поэтому угол BCE = 180 - 120 = 60
так как треугольник равнобедренный то угол 1=2
1+3=180градусов
2+4=180градусов
отсюда следует что угол 3=углу4
1+3=180
1=2=40
3=180-40=140
Угол А в 2 раза меньше внешнего угла ВСК, то есть
∠А=α , ∠ВСК=2α.
Внешний угол треугольника = сумме двух внутренних углов, не смежных с ним. Значит, ∠ВСК=∠А+∠В ⇒ 2α=α+∠В ⇒ ∠В=α .
Получаем треугольник, у которого равны два угла, значит, треугольник равнобедренный ( углы при основании треугольника равны ).