Построим на прямой AB за точку A точку L на расстоянии от A, равном ребру тетраэдра (примем ребро за 1 для удобства). Тогда в треугольнике BCL AM - средняя линия (т.к. BM = MC, BA = AL), т.е. AM || CL.
Т.е. искомый угол (MA ^ DC) = (CL ^ DC) = ∠LCD.
По свойству средней линии CL = 2 * AM. AM - медиана в правильном треугольнике (т.к. тетраэдр правильный). AM = √3 / 2, CL = √3.
∠DAL = 180° - ∠BAD = 120°. В треугольнике DAL по теореме косинусов найдём сторону DL:
DL² = DA² + AL² - 2DA· AL · cos120° = 1 + 1 - 2 · (-cos60°) = 3, DL = √3.
Таким образом, в треугольнике LDC известны 3 стороны и неизвестен угол ∠LCD = α. Найдём его из теоремы косинусов:
<span>DL² = CL² + CD² - 2DC· CL · cos</span>α
3 = 3 + 1 - 2√3 · cosα
cosα = √3 / 6
α = arccos(√3 / 6)
∠B=∠AFE⇒EF║CB⇒∠AEF=90° EK делит этот угол на два, один из которых в два раза больше другого⇒один = 30°, другой = 60. Поскольку не сказано, какой угол больше, а какой меньше, возможны оба варианта.
Ответ: 30° или 60°
Угол ВАD=углу СDA=49+9=58 градусов.
Угол DAC=углу АСВ (накрестлежащие)=49градусов.
Высота пирамиды: h = 8 * cos 30° = 4√3 см.
Сторона шестиуголька: a = 8 * sin 30° = 4 см.
Площадь основания пирамиды равно площади шести равносторонних треугольников со стороной а:
S = 6*4²*√3/4 = 24√3 см².
Объём пирамиды: V = 1/3 * S * h = 1/3 * 24√3 * 4√3 = 96 см³.