Если ВН (высота) делит сторону АС на две равные части (АН и СН), то этот треугольник является равнобедренным. Значит АВ = ВС = 5 см.
Пусть точка В <span>находится на оси Ох, а точка С - в плоскости YОZ.
Координата х точки С равна 0.
Проекция отрезка ВС на плоскость ХОУ делится проекцией точки А на эту плоскость пополам.
Из уравнения середины отрезка имеем:
Хв = 2Ха-Хс = 2*2-0 = 4.
Координаты точки В по y и z равны 0.
Теперь можно определить длину ВС как 2 отрезка АВ:
L(BC) = 2</span>√((4-2)²+(0-6)²+(0-3)²) = 2√(4+36+9) = 2√49 = 2*7 = 14.
Т.к. радиус = 9 см, то длина окружности 56,55 см (2пиэр)
далее через пропорцию 20/360=х/56,55
х=3,14 см
Учитывая свойства ромба, мы можем провести биссектрису с тупого известного угла и получим при этом два равных треугольника с углами 62 град. Сумма углов в треуг = 180, то на острый угол остается 56град, он же и есть ответ
Я думаю, в условии ошибка, трапеция не может быть равносторонней. Вероятно, читать задачу надо так: <span>Боковая сторона равнобедренной трапеции равна десять корней из двух и образует с основанием угол 45 градусов. Найти площадь трапеции если в неё можно вписать окружность.
</span>Решение:
Опустим ВК⊥АD, ∠А=∠АВК=45°⇒ВК=АК
АВ²=2ВК²⇒ВК=√АВ²/2=10.
В четырехугольник можно вписать окружность тогда, когда суммы противоположных сторон четырехугольника равны.⇒
АВ+CD=BC+AD=2*10√2=20√2
S=BK*(BC+AD)/2 =10*(20√2)/2=100√2.