Проведём осевое сечение конуса.
Имеем равнобедренный треугольник с основанием 2r и вписанным кругом радиуса R.
Центр О вписанного круга находится на пересечении высоты H конуса и биссектрисы угла при основании.
Обозначим половину угла при основании α.
tg α = R/r.
H = r*tg(2α).
tg(2α) = 2tgα/(1-tg²α),
H = r*((2R/r)/(1-(R²/r²))) = 2Rr²/(r²-R²).
So = πr².
V = (1/3)So*H = (1/3)πr²*2Rr²/(r²-R²) = 2πRr⁴/(3(<span>r²-R²)).</span>
Sceч=πR²
R=√(Scеч/π)
R=√(81/3.14)≈5
(R-h)=√(15²-5²)≈14
Значит h≈1
V=πh²(R-h/3)=π(5-1/3)≈15
Найдем гипотенузу треугольника АВС по Пифагору.
АВ=√((АС²+ВС²) или АВ=√(2704+16)=√2720 =4√170.
Косинус угла А равен отношению прилежащего катета к гипотенузе или
CosA=52/(4√170).
Внешний угол при вершине А треугольника - это смежный угол с углом А
и равен 180 - А.
Следовательно, по формуле приведения Cos (180-α) = - cosα имеем:
Косинус внешнего угла равен Cos(180-А)= -52/(4√170) ≈- 0,997.
α = arccos(-0,997) ≈ 176° (угол тупой).
Сумма односторонних углов параллелограмма = 180 градусов.
х-1-ый угол;
2х-2-ой угол;
x+2x=180
3x=180
x=60 градусов
2х=120 градусов
ответ 30 градусов !!!!!!!!