Обозначим искомые числа через 100a+10b+c. Тогда 100a+10b+c = 16*(a+b+c) => 100a+10b+c = 16a+16b+16c => 100a-16a = 16b-10b+16c-c => 84a = 6b+15c. Видим, что a ≤ 3. Тогда имеем следующие варианты 1) a = 1, c = 2, b = 9. 2) a = 1, c = 4, b = 4. 2) a = 2, b = 8, c = 8. Т. о. всего три трехзначных числа, удовлетворяющих требованиям: 192, 144 и 288.
Одз: x>0 и 6-5x>0 пересечением является неравенство 0<x<6/5
(36/25)^log9(x)>(5/6)^ -log9(6-5x)
(6/5)^log9(x в квадрате )>(6/5)^ log9(6-5x)
тк 6/5>1 то неравенство выше равносильно неравенству
x^2>6-5x
x^2+5x-6>0
решением этого неравенства явл x<-6 и x>1
найдем пересечение с ОДЗ, получает что 1<x<6/5
Точка А на расстоянии 14 единиц,В на расстоянии 6, С на расстоянии а единиц
k+k+k+k+k=5*k произведение нечетных нечетно