∠А=∠С=(180-24)/2=78°, в Δ АМС ∠МАС=180-∠М-∠С=12°
Площадь ромба=диагональ*диагональ и разделить на 2(по формуле)
то есть S=24*10/2=120 см^2
Так как диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам,то диагонали АС и ВD имеют точку пересечения О,то есть ОС=АС/2=10/2=5, а ОВ=ВD/2=24/2=12. Имеем прямоугольный треугольник COB с катетами ОВ и ОС. Находим гипотенузу по теореме Пифагора(в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов). То есть ВС^2=OB^2+OC^2=169,ВС=корень из 169=13. По определению ромб имеет все равные стороны. ВС=СD=DA=AB
Если считать по теореме Пифагора, тогда один катет 8 другой 6
10^2=(x-2)^2+x^2
12^2=2x
x=6^2- первый катет
6^2+2^2==8^2- второй катет
Проверяем
10^2=6^2+8^2;100=36+64
Угол BAC 80 градусов, так как смежный угол 180 градусов (180-100 =80)
угол BCA 80 градусов, так как вертикальный угол и равен противолежащему, те 80
так как оба угла одинаковы, по 80 градусов - треугольник равнобедренный
Две стороны параллелограмма образуют с его диагональю треугольник, а как известно, в треугольнике сумма двух сторон больше третей, значит:
диагональ d должна удовлетворять неравенству d <3 + 5
d <7
этому условию удовлетворяет только вариант 3) 4 см
Ответ: 3) 4 см