a) точка М - это проекция P на AS, так как AS перпендикулярно PM.
б) отрезок MS - это проекция катета PS на прямую AS, так как M - это проекция P на AS, а S лежит на AS.
Перевод радиан в градусы
Зная, что углу 2 * пи соответствует угол 360 градусов:
Ad = Ar * 180 / пи
Где Ad — угол в градусах, Ar — угол в радианах.
Перевод градусов в радианы
Зная, что углу 360 градусов соответствует угол 2 * пи:
Ar = Ad * пи / 180
Где Ad — угол в градусах, Ar — угол в радианах.
ФОРМУЛЫ РАСЧЕТА ДЛИНЫ
Длина окружности
L = 2 * пи * R
Где L — длина окружности, R — радиус окружности.
Длина дуги окружности
L = A * R
Где L — длина дуги окружности, R — радиус окружности, A — центральный угол, выраженный в радианах.
Так, для окружности, A = 2*пи (360 градусов) , получим L = 2*пи*R.
ФОРМУЛЫ РАСЧЕТА ПЛОЩАДИ
Площадь треугольника.
Формула Герона.
S = (p * (p-a) * (p-b) * (p-c) )^1/2.
Где S — площадь треугольника, a, b, c — длины сторон,
p=(a+b+c)/2 — полупериметр.
Площадь круга
S = пи * R²
Где S — площадь круга, R — радиус круга.
Площадь сектора
S = (Ld * R)/2 = (A * R²)/2
Где S — площадь сектора, R — радиус круга, Ld — длина дуги.
Площадь поверхности шара (сферы)
S = 4 * пи * R²
Где S — площадь поверхности шара, R — радиус шара.
Площадь боковой поверхности цилиндра
S = 2 * пи * R * H
Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Площадь полной поверхности цилиндра
S = 2 * пи * R * H + 2 * пи * R²
Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Площадь боковой поверхности конуса
S = пи * R * L
Где S — площадь боковой поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.
Площадь полной поверхности конуса
S = пи * R * L + пи * R²
Где S — площадь полной поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.
ФОРМУЛЫ РАСЧЕТА ОБЪЕМА
Объем шара
V = 4 / 3 * пи * R³
Где V — объем шара, R — радиус шара.
Объем цилиндра (прямого, круглого)
V = пи * R² *H
Где V — объем цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Объем конуса (прямого, круглого)
V = 1/3 пи * R² * H
<span>Где V — объем конуса, R — радиус основания конуса, H -конуса</span>
Задача на подобие треугольников.
Сделаем рисунок.
Соединим В и А1.
Продолжим СС1 до пересечения с ВА1 в точке С2.
<span>С<u>С2- средняя линия треугольника АВА1</u> ( ВС=СА и СС2|| АА1)
</span><em>СС2</em>=АА1:2=(<span>6/√2):2= </span><span>3/√2=(3√2):√2*√2=<em>1,5√2</em>
</span><span><u>С1С2 - средняя линия треугольника А1ВВ1</u> (ВС2=С2А1 и С1С2||ВВ1)</span><span> С1С2=ВВ1:2=(√2):2=0,5√2
</span>СС1=СС2-С1С2
<span><em>СС1</em>=1,5√2- 0,5√2=<em>√2
</em><u><em>
</em></u></span>
<span>a{-2;6}, b{-4;8} c=a+2b и d=b-a=b+(-a)
-a{2;-6}
2b{-8;16}
a+2b{-2-8;6+16} d{-4+2;8-6}
a+2b{-10;22} d{-2;2}</span>