Ну здесь два варианта
Начнём с того, что в равнобедренном треугольнике две стороны равны.
Первый Р=5см+5см+7см=17см
Второй Р=7см+7см+5см=19см
Треугольник может быть тупоугольным, остроугольным или прямоугольным...
больший угол треугольника лежит против большей стороны
(это же утверждает и теорема синусов)
а теорема косинусов позволяет определить вид треугольника:
нужно записать ее для большей стороны, чтобы определить вид большего угла:
11² = 6² + 8² - 2*6*8*cos(x)
cos(x) = (6² + (8+11)(8-11)) / (2*6*8)
cos(x) = (36 - 19*3) / (2*6*8) = (12-19) / (2*2*8) < 0
косинус отрицателен для тупых углов
этот треугольник тупоугольный
--------------------------------------------
косинус равен нулю для угла 90 градусов
косинус положителен для острых углов)))
Трикутник АОВ рівносторонній
Радіуси ОА=ОВ отже кутОВА=кут ОАВ=(180-60)/2=60
Звідси АВ=АО=ВО=8
1)4. Точка О - центр вписанной окружности, так как она равноудалена рт
сторон треугольника. Центр вписанной окружности лежит на пересечении
биссектрис внутренних углов треугольника. Значит <MKO=<NKO.
<MKN=80°. Тогда сумма <KMN+KNM=100°, а сумма их половин равна,
естественно, 50°. Значит <MON в треугольнике МОN равен 180-50=130°.
Ответ: <MON=130°.
2) Точка О - точка пересечения биссектрис треугольника. Значит ОЕ - тоже
биссектриса. И точка О
и если ЕК - это прямая, а не два разных по направлению отрезка ОЕ и ОК,
то треугольник MEF- равносторонний и в нем ЕК - высота, биссектриса и
медиана. Следовательно, точка О делит отрезок ЕК на два в отношении 2:1
от вершины.
ОК=4.
ОТВЕТ: ОК=4.
3. <span>АА1 и ВВ1 медианы и по свойству медиан треугольника делятся в точке пересечения на отрезки в отношении 2:1, считая от вершины.
Значит АО=8, ОА1=4, ВО=6, ОВ1=3.
И
если медианы АА1 и ВВ1 перпендикулярны(что совершенно не понятно по рисунку, но должно быть - иначе решения нет), то из прямоугольного
треугольника А1В1О по Пифагору найдем А1В1=√(ОВ1²+ОА1²)=√(9+16)=5.
АА1 - средняя линия треугольника АВС, значит АВ=А1В1*2=10.
ОТВЕТ: АВ=10.</span>
4) Дано: KF -перпендикуляр к NP
NR - перпендикуляр к КР
ОЕ - перпендикуляр к KN
Точка О - их пересечение. ОК=8, ОF=6, FP=8.
В прямоугольном треугольнике РОF по Пифагору ОР=√(OF²+FP²)=10
Есть теорема: "Высоты треугольника пересекаются в одной точке".
Значит ОЕ - часть высоты РЕ, опущенной на сторону КN.
Прямоугольные треугольники КЕО и РFO подобны по острому углу,(углы ЕОК и
FOP - вертикальные). Из подобия имеем: ЕО/OF=ОК/ОP, отсюда ЕО=ОК*ОF/ОP
или ЕО=8*6/10=4,8.
Ответ: ЕО=4,8.
Нехай бічна сторона - 3x см, основа - x см. За умовою P = 84 см. Маэмо рівняння:
3x + 3x + x = 84
7x = 84
x = 84 : 7
x = 12 (см) - основа;
3x = 3 * 12 = 36 (см) - бічна сторона.
Якщо трикутник рівнобедренний, то друга бічна сторона - 36 см.
Відповідь: 12 см, 36 см, 36 см.