Так как треугольники подобны (по условию), значит <span><span>∠N=</span>∠</span>C=180-43-78=59 градусов.
из вершины В на АD опустим перпендикуляр, назовем его ВК. тогда, т.к. в треугольнике АВD стороны АВ и ВD равны получим, что ВК-медиана, биссектриса и высота в треугольнике АВD. значит ВК разделила АD пополам, то есть АК=КD=12/2=6.
по основному тригонометрическому тождеству находим cos А=корень из 1-sin квадрат А, то есть корень из 1-0,64=0,6.
из треугольника АВК соs А= АК/АВ, значит АВ=АК/cos A
АВ=6/0,6=10
по теореме Пифагора из треугольника АВК
ВК=корень из АВ квадрат минус АК квадрат
ВК=корень из 100-36= 8,
тогда площать параллелограмма АВСD=АD*ВК=12*8=96
Полупериметр АВС
p = (16+20+24)/2 = 30 см
Площадь по формуле Герона
S² = 30*(30-16)(30-20)(30-24)
S² = 30*14*10*8
S = 60√7 см²
Площадь через высоту к стороне 16
S = 1/2*16*CH = 60√7
2*CH = 15√7
CH = 15/2*√7 см
---
HB по Пифагору из треугольника CHB
HB² + CH² = CB²
HB² = 24² - (15/2*√7)² = 576 - 225/4*7 = 729/4
HB = 27/2 cm
---
медиана СД делит сторону АВ пропорционально сторонам АС и ВС
АД/АС = ВД/ВС
(16-ВД)/20 =ВД/24
(16-ВД)/5 =ВД/6
6*(16-ВД) =5*ВД
96 - 6*ВД = 5*ВД
96 = 11*ВД
ВД = 96/11 см
---
НД = НВ - ВД
НД = 27/2 - 96/11 = 105/22 cm
---
по Пифагору из треугольника СНД
СД² = СН² + НД²
СД² = (15/2*√7)² + (105/22)²
СД² = 225/4*7 + 11025/484
СД² = 50400/121
CД = 60√14/11
---
угол между биссектрисой СД угла АСВ и биссектрисой СЩ внешнего угла ВСЖ равен 90°
Треугольники ЕСД и СНД прямоугольные и подобные - угол Д общий, ещё один угол прямой.
ЕД/СД = СД/НД
ЕД = СД²/НД
ЕД = 50400/121 / (105/22) = 960/11 см
Если один из внешних углов острый, значит при вершине тупой.Против большого угла лежит большая сторона=>основание > боковой стороны .Пусть боковая сторона х ,а основание у
2х+у=30
х-2у=5
2х+2=30
-2-4у=10
5у=20
у=4
2х+4=30
2х=26
х=13
Djsjsbbehesdjdkjdjdendnjd