Получается ,что известная высота(12) пересекает прямую содержащую сторону (14) за пределами стороны ,потому как(по Пифагору стороны 12 и 21 являются сторонами прямоугольного треугольника ) 21*21-12*12=297,корень кв. приблизительно 17,2 .Думаю заданный параллелограмм имеет очень острый угол при основании у одной вершины и очень тупой при второй ,это о том ,что касается чертежа(вида параллелограмма). Теперь по искомой высоте H=14*sin угла при основании .sin=12/21 .H=14*(12/21)=8 см.Через arcsin можно узнать величины углов ,это 35 и 145 гр. соответственно .
1) Рассмотрим треугольники ABC & BCD
1. угол ABC= угол CBD - по условию
2. угол A = угол D - по условию
3. BC - общая
По двум сторонам и углу между ними треугольники ABC & BCD равны.
Ч.т.д
Пусть х -одна часть. тогда одна сторона равна 3х, а другая - 5х. т.к одна сторона меньше другой на 8 см,то составляем ур-ние. 3х+8=5х. Отсюда х=4. 4*3=12 см меньшая сторона,а 4*5=20 большая сторона. Р=(12+20)*2=64см
т.к АЕ=ЕС, значит треугольник АЕС-равнобедр, отсюда следует уголЕСА=углу ЕАС=37 градусов (углы при основании равны)
т.к. АЕ-биссектриса, то угол ЕАС= углу ДАЕ=37 градусов
т.к. ДА=ДЕ, следует треугольник АДЕ-равнобедренный, значит угол ДАЕ= углу АЕД=37 градусов(углы при основании равны)
т.к сумма углов треугольника равна 180 градусов, следует угол АДЕ=180 градусов-( 37 градусов+37 градусов)= 106 градусов
угол ВДЕ= 180 градусов-106 градусов=74 градуса.
Ответ: угол ВДЕ=74 градуса