Проведем отрезок ОС. Он разделит четырехгранник CAOB на два равных прямоугольных треугольника AOC=BOC. Треугольники равны, т.к.сторона OC-общая, AO=BO=Rокружности и угол CAO=углу CBO=90градусов, т.к. радиус проведенный к точке касания образует перпендикуляр к касательной линии.
Из равенства треугольников следует равенство углов ACO=BCO. Эти два угла равны, а в сумме они образуют угол C, который равен 18 градусам. Значит угол ACO=BCO=9градусов. Оставшиеся углы AOC и BOC будут равны 180-90-9=81градусу. Угол АОB состоит из углов: AOC и BOC, которые равны между собой, а их значение мы вычислили выше. Значит угол AOB=2*81=162градуса
<span>(2√5)²/8 = 4*5/8 = 5/2 = 2,5
Ответ: В</span>
/////////////////////////