Пусть точка В <span>находится на оси Ох, а точка С - в плоскости YОZ.
Координата х точки С равна 0.
Проекция отрезка ВС на плоскость ХОУ делится проекцией точки А на эту плоскость пополам.
Из уравнения середины отрезка имеем:
Хв = 2Ха-Хс = 2*2-0 = 4.
Координаты точки В по y и z равны 0.
Теперь можно определить длину ВС как 2 отрезка АВ:
L(BC) = 2</span>√((4-2)²+(0-6)²+(0-3)²) = 2√(4+36+9) = 2√49 = 2*7 = 14.
8 см , тому що це квадрат , діагоналі дорівнюють один одному , і перпендикуляр дорівнює так само
Как известно напротив угла в 30 градусов лежит катет равный половине гипотенузы, отсюда АВ=2ВС=6 корень из 3*2=12 корень из 3.