Теорема Пифагора:
Квадрат гипотенузы равен сумме квадратов ее катетов.
К примеру прямоугольный треугольник АВС. Применяя теорему найдем
AB^2= BC^2+CA^2
Вот собственно и все
А то долго писать держи так , не обижайся ток
<u>Ответ</u>: ≈8,33 см²
Объяснение:
На рисунке дан треугольник АВС с основанием АВ=5 см (5 клеток). <u>Высота </u><u>Н</u> из вершины С на АВ равна 6 см. Ѕ(АВС)=6•5:2=15 см²
КL║АВ и <em>отсекает от ∆ АВС </em><u><em>подобный ему треугольник </em></u><em>СКL</em>, высота h которого 4 см. ⇒ коэффициент подобия k=h:H=4/6=2/3
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
Ѕ(CKL):S(ABC)=k²=4/9 ⇒
S(CKL):15=4/9 , откуда 9•S(CKL)=60 ⇒
S(CKL)=60/9=20/3 (см²)
<u>Ѕ трапеции</u> АКLB= S(ABC)-S(KCL)=15-(20/3)=25/3=8,(3)≈8,33 см²
====================================================