Добрый день! Решения задач №1, №2, №5, №8 во вложенных файлах
Биссектриса треугольника делит противоположную сторону на отрезки пропорциональные двум другим сторонам, т.е.:
и
Пусть EB = x, BD = y. Получим 2 уравнения:
EB = 16; BD = 18, тогда
АВ = 20 + 16 = 36
ВС = 30 + 18 = 48
Заметим, как относятся стороны треугольника АВС:
АВ : ВС : АС = 60 : 48 : 36 = 5 : 4 : 3 - египетский треугольник, т.е. ΔАВС - прямоугольный с прямым углом В.
Тогда ΔЕВD - так же прямоугольный, его катеты равны 16 и 18, найдем гипотенузу ED:
Площадь прямоугольного ΔЕВD:
S = EB * BD /2 = 16*18/2 = 144
Полупериметр <span>ΔЕВD:
p = (EB + BD + ED)/2 = (16+18+2</span>√145)/2 = (34 + 2√145)/2 = 17 + √145
радиус вписанной окружности:
r = S / p = 144/(17+√145) = 17-√145
По т. синусов АВ\sinC=2R
находим АВ
АВ= R=6
М - середина АВ значит АМ=МВ=3
по свойству пересекающихся хорд АМ умн МВ=МТ умн СМ
ТМ умн 9 = 3 умн 3
ТМ=1
СТ=1+9=10
Две прямые на плоскости пересекаются, они имеют одну и только
одну общую точку. (частный случай: если же две прямые на плоскости
совпадают, т. е. одна поверх другой, то они имеют бесконечное количество
общих точек).
Вот правильный ответ
B(9;1)
N(1;0)