разность длин оснований равна 14 а сумма 28 (ну, раз можно вписать окружность, то суммы противоположных сторон равны). ПОэтому основания 21 и 7.
Для ускорения счета (который легко можно проделать общепринятым способом) я замечу, что трапецию можно разбить на прямоугольник с одной из сторон 7 и два прямоугольных треугольника с гипотенузами 13 и 15, одинаковым катетом и суммой других катетов, равной 14.
Сразу видно, что речь идет о Пифагоровых треугольниках (5, 12, 13) и (9, 12, 15).
Поэтому высота трапеции равна 12.
Если очень хочется сделать "как все" (что в данном случае правильно:)) - проведите высоты из вершин меньшего основания и запишите теоремы Пифагора для двух треугольников "по бокам". Полученная система легко решается. Решение я уже написал.
Площадь трапеции 28*12/2 = 168.
1.180-30=150
150\2=30
значит угол cbaравен 30 гр
так как у равнобедренного основания равны
120+160=280 360-280=80 градусов третий угол,думаю так
Пусть углы пронумерованы так, как показано на рисунке.
Если ∠1 = 85°, то ∠4 = 85° (вертикальные); ∠5 = 85° (соответственные); ∠8 = 85° (вертикальные). Соответственно ∠2 = 180° - 85° = 95° (смежные с ∠1). Углу 2 равны ∠3 (вертикальные), ∠6 (соответственные), ∠7 (вертикальные).
Таким образом, углы 1, 4, 5, 8 равны 85°, а углы 2, 3, 6, 7 равны 95°.