Треугольник DEF опирается на диаметр, следовательно он прямоугольный
угол DEF = 90 градусов
тогда угол EDA = 70 градусов ((сумма острых углов прямоугольного треугольника равна 90 градусов))
4-угольник ABCD -вписан в окружность
сумма противоположных углов вписанного 4-угольника равна 180 градусов)))
угол бэта = 180-70 = 110 градусов
Прямокутник АВСД, діагоналі АС та ВД перетинаються в т. О.
ОН - відстань від т. О до більшої сторони прямокутника ВС (отже ОН - висота трикутника ВСО)
ОМ - відстань від т. О до більшої сторони прямокутника АД (отже ОМ - висота трикутника АДО)
ОР - відстань від т. О до меншої сторони прямокутника АВ (отже ОР - висота трикутника АВО)
ОК - відстань від т. О до меншої сторони прямокутника СД (отже ОК - висота трикутника СДО)
Оскільки Діагоналі прямокутника мають однакову довжину, а також <span> в точці перетину діляться навпіл, значить трикутник ВСО=трикутнику АДО та трикутник АВО=трикутнику СДО.
А це означає, що і висоти у попарно рівних трикутниках між собою рівні, а саме
ОК=ОР, а ОН=ОМ.
Нехай ОН=ОМ=Х см, тоді ОК=ОР=Х+5 см (по умові задачі сказано, що
</span><span>точка перетину діагоналей прямокутника лежить на відстані від більшої сторони на 5 см ближче, ніж від меншої).
У прямокутника протилежні сторони рівні.
АВ=СД=ОН+ОМ=Х+Х=2Х см
ВС=АД=ОР+ОК=(</span>Х+5) +(Х+5)=2Х+10 см
Периметр = сумі довжин усіх сторін прямокутника
Периметр = АВ+ВС+СД+АД=44 см
<span>Отже
2Х+(</span>2Х+10) + 2Х+(2Х+10)=44
<span>8Х+20=44
8Х=24
Х=3 см
Виходить, що
</span>АВ=СД=2Х=2*3=6 см
ВС=АД=2Х+10 =2*3+10=6+10=16 см
<span>
Відповідь: сторони прямокутника </span>АВ=СД=6 см та ВС=АД=16 см<span>
</span>
Точно третье
<span>биссектрисы треугольника пересекаются в центре вписанной в него окружности</span>
Опустим высоту из вершины
, получим прямоугольный треугольник
, откуда
Высота
Найдем длину диагонали
Треугольники
подобны ,
Площадь трапеции
Расстояние
Ответ утроенный квадрат равен
Ответ площадь треугольника равна