Вроде 55 градусов,давно геометрию не решала
Периметры подобных:
Периметры подобных треугольников относятся, как соответствующие стороны.
При подобном преобразовании фигуры все углы сохраняются, отрезки изменяются в одно и то же число раз. Поэтому высота h треугольника при преобразовании гомотетии с коэффициентом k перейдет в высоту треугольника h’. Для площади этого треугольника будем иметь
то есть при преобразовании подобия площадь умножается на квадрат коэффициента подобия.
a1/a2=b1/b2=c1/c2=k -коэф. подобия
a1+b1+c1=k*a2+k*b2+k*c2 =>
a1+b1+c1=k*(a2+b2+c2)
Все доказано
Биссектриса:
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
Высота:
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.
Извиняюсь, что без доказательств 2 последних.
<span>На уровне какого класса решать? Пусть 8 класс. а=ОА, в=ОВ, тогда АВ = ОВ-ОА = (x1-x2;у1-у2) = (12;12). Пишем теорему косинусов АB^2 = OA^2+OB^2 - 2*OA*OB*cosy. cosy=(OA^2+OB^2-AB^2)/(2*OA*OB) . OA=5. OB=17. AB=12*(корень из 2). Длины векторов вычисляю по формуле: корень из суммы квадратов разности координат = корень из ((х1-х2)^2+(y1-y2)^2). cosy=(25+289-288)/(2*5*17)=13/85</span>
∡1=140°-по условию задачи
∡2=40°=180°-140°
∡3=40°-т.к. он вертикален ∡2
∡4=140°-т.к. он вертикален∡1
∢5=74°
-т.к. он вертикален ∡8
∢6=106°
=180°-74°
∢7=106°
-т.к. он вертикален ∡6
∢8=74°- по условию задачи