4,2,2вот такие ответы(я отвечала на все вопросы по очереди)
P=17+65+80/2=81... S=√81(81-17)(81-65)(81-80)=288 см²
Дано:
ABCA1B1C1 - правильная треугольная призvf
AB=8см
AA1=6см
Найти S сеч. -?
Решение:
1)Построим сечение:
(B1C1 - (это сторона верхнего основания), А - ( это противолежащая вершина))
Проводим B1A в (AA1B1B)
Проводим АС1 в (АА1С1С)
В1С1А - искомое сечение, равнобедренный треугольник, т.к B1A =АС1
2)по теореме Пифагора из треугольника AA1B1 - прямоугольного:
B1A^2 = AA1^2+A1B1^2
отсюда:
B1A^2= 36+64=100
B1A=10
3) по формуле:
S=<span>√p(p-a)(p-b)(p-c)
</span>S=√14*4*4*6=8<span>√21
</span>Ответ:8√21
или можно найти высоту АН сечения, она равна 2√21
и потом находим S=a*h/2
S=8*2√21/2=8√21
<span>задача плоская - всё происходит в плоскости, перпендикулярной грани угла и содержащей т.А. Рисуем угол 45 градусов, где то внутри угла на расстоянии 10 - точку А, и из неё опускаем перпендикуляры на стороны угла. Пусть длина одного х, тогда другого х*3*√2.</span>
(Для любителей тупых решений скажу сразу, х является решением тригонометрического уравнения<span>pi/4 = arccos(x/10) + arccos(x*3*√2/10);</span>Однако все гораздо приятнее)
<span>Продолжим отрезок длинны х до пересячения со второй стороной угла. Получим прямоугольный равнобедренный треугольник, у которого катет равен х+х*3*√2*√2 = 7*х, и в нем отрезок, соединяющий вершину одного острого угла с точкой на противоположном катете, который отсекает на нем отрезок х. Это отрезок по условию равен 10.</span>отсюда<span>х^2 + (7*x)^2 = 10^2; х = √2; второе расстояние равно 6, конечно.</span>
3- 3+4=7см
5- CD будет равен DE т.е. 6 дм+6дм=12дм
7-4см