Если многоугольник может быть невыпуклым, и может самопересекаться, то решение следующее:
Так как в единичном квадрате наибольшее расстояние между двумя точками равно sqrt(2), то каждая сторона многоугольника меньше sqrt(2). Периметр квадрата 4, а многоугольника 28. Тогда у него не меньше [28/sqrt(2)]+1=20 сторон.
Такой многоугольник можно получить, если рассмотреть ломаную, каждое звено которой немного меньше диагонали квадрата, и равно 1.4. Двадцатое звено заканчивается там. где начинается первое.
Где сам рисунок где дано покажи
В прямоугольном треугольнике ABC, угол А=90 градусов, АВ=20 см, высота АД=12 см. Найти надо АС и COS угла С.
ДВ²=АВ²-АД²= 400-144=256 по Пифагорской теореме.
ДВ=16
Треугольники АВС и ДВА подобны по первому признаку подобия (два угла равны угол В-общий, угол АДВ=углу ВАС=90 градусов), следовательно
ДВ/АВ=АВ/СВ
16/20=20/СВ
СВ=20*20:16=25
АС"=СВ"-АВ"=25"-20"=625-400=225
АС=15
CosC=АС/СВ=15/25=3/5
Cos C=3/5