В основании правильной четырехугольной пирамиды квадрат, высота проецируется в точку пересечения его диагоналей.
Пусть К - середина МА.
1. Построение сечения.
В плоскости (АМС) соединим точки К и С. КС∩МО = Т.
В плоскости (DMB) через точку Т проведем прямую, параллельную BD. Точки L и H - точки пересечения этой прямой с ребрами MB и MD соответственно.
KLCH - искомое сечение (Точки С и К лежат в плоскости сечения, HL║BD, значит и сечение параллельно BD).
2.
BD⊥AC как диагонали квадрата
BD⊥MO, т.к. МО высота пирамиды, ⇒ BD⊥(AMC)
KC⊂(AMC) ⇒ BD⊥KC ⇒ HL⊥KC
В четырехугольнике KLCH диагонали перпендикулярны, поэтому его площадь можно найти как половину произведения диагоналей.
AC = 6√2 как диагональ квадрата.
Из ΔАМС по теореме косинусов
cosA = (AM² + AC² - MC²)/(2AM·AC)
Из ΔАКС по теореме косинусов
cosA = (AK² + AC² - KC²)/(2AK·AC)
Приравняем:
(AM² + AC² - MC²)/(2AM·AC) = (AK² + AC² - KC²)/(2AK·AC)
(144 + 72 - 144)/(2·12·6√2) = (36 + 72 - KC²)/(2·6·6√2)
72/2 = 108 - KC²
KC² = 72
KC = 6√2
В ΔАМС точка Т - точка пересечения медиан. Значит,
МТ:ТО = 2:1, и МТ:МО = 2:3
ΔHML подобен ΔDMB по двум углам (угол при вершине М общий, ∠MHL = ∠MDB как соответственные при пересечении HL║BD секущей MD) ⇒
HL:DB = МТ:МО = 2:3
HL = BD·2/3 = 6√2 · 2/3 = 4√2
Sklch = KC·HL/2 = 6√2·4√2/2 = 24
Угол 1=122 градуса
Угол 2= 180-122=58 градуса
Представим, что стороны АВ и CD параллельны,
тогда <BCD = 180 - 60 = 120 градусов ( односторонние углы, при пересечении двух параллельных прямых третей, в суме дают 180 градусов)
Ответ: <u><BCD = </u><span><u>120 градусов</u></span>
1 сторона ромба- a=128:4=32
S=a•a•sin60=32•32•^3/2=512^3
ответ 512 корней из 3
Такс
прямоугольник - Sab
треугольник - S=1/2ah
трапеция - S=1/2(a+b)h