Пусть ромб имеет сторону a и диагонали d1 и d2. Тогда a = sqrt((d1/2)^2+(d2/2)^2)=sqrt(d1^2+d2^2)/2.
Теперь рассмотрим треугольник, у которого две стороны равны a, третья сторона является d1. Искомый острый угол находится в этом треугольнике между сторонами, равными a. Площадь этого треугольника можно найти двумя способами.
1) S=1/2 * d1 * d2/2 = d1*d2/4
2) S=1/2 * sin(fi) * a * a = 1/2 * sin(fi) * (<span>sqrt(d1^2+d2^2)/2)^2 = 1/2 * sin(fi) * (d1^2+d2^2) / 4=(d1^2+d2^2)*sin(fi)/8
Приравняем их и получим:
</span>d1*d2/4=<span>(d1^2+d2^2)*sin(fi)/8,
</span>sin(fi)=2*d1*d2/(d1^2+d2^2)
Подставим значения:
sin(fi)=2*3*4/(3^2+4^2)=24/25
Центральный угол
360/n
Внутренний угол
(n-2)*180/n
Составляем уравнение
(n-2)*180/n = 3*360/n
Решаем
180n - 360 = 1080
180n = 1440
n = 8
Ответ: восьмиугольник
S=1/2*AB*AC*sin60=1/2 * 6 корени из 3 * 8 * (корень из 3 /2) = 36
В треугольнике АВН:
∠АНВ = 90° (т.к. ВН - высота)
Сумма острых углов в прямоугольном треугольнике = 90°
∠АВН = 90 - ∠ВАН = 90 - 46 = 44°
Ответ: 44°